Is It Possible to Determine the Whole Crack Path at Once?
- Authors: Morozov E.M.1, Kurbanmagomedov A.K.2
-
Affiliations:
- National Research Nuclear University MEPhI
- RUDN University
- Issue: Vol 20, No 4 (2024)
- Pages: 364-373
- Section: Theory of plasticity
- URL: https://journals.rcsi.science/1815-5235/article/view/325881
- DOI: https://doi.org/10.22363/1815-5235-2024-20-4-364-373
- EDN: https://elibrary.ru/TCMXGL
- ID: 325881
Cite item
Full Text
Abstract
A brief review of crack path calculation methods using integral principles of mechanics is presented. In twodimensional setting, a crack is considered as a geodesic line on the surface of a body with a metric that depends on the initial stress state. The possibility of approximate determination of crack path on the basis of integral principles is illustrated on a number of problems. In particular, crack paths in a half-plane under uniformly distributed load applied on its edge are determined. The calculations include the stress state of the half-plane taken from the solution for a body without a crack. The fruitfulness of the representation of displacements of crack edges using the Winkler’s hypothesis is shown. To study the subcritical behavior of the crack, the concept of cracon, a quasi-particle simulating the motion of the crack tip, can be introduced. The problem of determining the crack path on the basis of integral principles of mechanics is insufficiently investigated and requires further research.
About the authors
Evgeny M. Morozov
National Research Nuclear University MEPhI
Email: evgeny.morozof@gmail.com
ORCID iD: 0000-0002-4824-8481
SPIN-code: 3989-2934
Doctor of Technical Sciences, Professor Professor of the Department of Density Physics
Moscow, RussiaArslan K. Kurbanmagomedov
RUDN University
Author for correspondence.
Email: kurbanmagomedov_ak@pfur.ru
ORCID iD: 0000-0001-9158-0378
SPIN-code: 5262-5269
Candidate of Physical and Mathematical Sciences, senior lecturer, Nikolskii Mathematical Institute
Moscow, RussiaReferences
- Xu S., Reinhardt H.W. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part I: Experimental investigation of crack propagation. International Journal of Fracture. 1999;98(2):111-149. https://doi.org/10.1023/A:1018668929989
- Sedov L.I. Continuum mechanics. St. Petersburg: Lan Publ.; 2004. (In Russ.) EDN: QJMTCB
- Elices M., Guinea G.V., Gomez J., Planas J. The cohesive zone model: advantages, limitations and challenges. Engineering Fracture Mechanics. 2002;69(2):137-163. EDN: ASFTOD
- Schapery R.A. A theory of viscoelastic crack growth: revisited. International Journal of Fracture. 2022;233:1-16. https://doi.org/10.1007/s10704-021-00605-z
- Dombrovskii Y.M., Stepanov M.S. Mechanisms of Intragrain Plastic Deformation in Steel Heating Process. Metal Science and Heat Treatment. 2024;65:747-750. https://doi.org/10.1007/s11041-024-01000-w
- Komarov O.N., Sevastyanov G.M., Abashkin E.E., Khudyakova V.A. Shift of a Spherical Layer Under High Pressures. Metallurgist.2023;67:801-813. https://doi.org/10.1007/s11015-023-01568-3
- Lepikhin A.M., Morozov E.M., Makhutov N.A., Leschenko V.V. Possibilities of Estimation of Fracture Probabilities and Allowable Sizes of Defects of Structural Elements According to the Criteria of Fracture Mechanics. Inorganic Materials. 2023;59(15);1524-1531. https://doi.org/10.1134/S0020168523150074
- Mahutov N.A., Morozov E.M., Gadenin M.M., Reznikov D.O., Yudina O.N. Coupled thermo-mechanical analysis of stress-strain response and limit states of structural materials taking into account the cyclic properties of steel and stress concentration. Continuum Mechanics and Thermodynamics. 2023;35:1535-1545. https://doi.org/10.1007/s00161-022-01160-1
- Morozov E.M., Alymov M.I. Fracture Pressure in Microdefects of Consolidated Materials. Doklady Physical Chemistry. 2021;501:111-113. https://doi.org/10.1134/S0012501621110026
- Matvienko Y.G., Morozov E.M.Two basic approaches in a search of the crack propagation angle. Fatigue and Fracture of Engineering Materials and Structures. 2017;40(8):1191-1200. https://doi.org/10.1111/ffe.12583
- Pook L.P. The linear elastic analysis of cracked bodies, crack paths and some practical crack path examples. Engineering Fracture Mechanics. 2016;167:2-19. https://doi.org/10.1016/j.engfracmech.2016.02.055
- Morozov E.M., Alymov M.I. Fracture Pressure in Microdefects of Consolidated Materials. Doklady Physical Chemistry. 2021;501(1):111-113. https://doi.org/10.1134/S0012501621110026
- Kurbanmagomedov A.K. Crack of the normal gap in the elastic layer. Bulletin of the Yakovlev chuvash state pedagogical university series: Mechanics of limit state. 2017;(1):96-104. (In Russ.) EDN: ZGIEKB
- Kolesnikov Yu.V., Morozov E.M. Mechanics of contact failure. Moscow: Nauka Publ.; 2012. (In Russ.)
- Gordeeva G.V., Kurbanmagomedov A.K., Spitsov D.V. Strength control of concrete structures during the assessment of the residual life of buildings and structures of a hazardous production facility in the field of thermal power engineering. The System technologies. 2022;(4):73-86. (In Russ.) https://doi.org/10.55287/22275398_2022_4_73
- Kurbanmagomedov A., Radzhabov Z., Okolnikova G. Investigation of Normal Fracture Cracks in an Infinite Elastic Medium. In: Guda, A. (eds) Networked Control Systems for Connected and Automated Vehicles. NN 2022. Lecture Notes in Networks and Systems. Springer, Cham. 2022;509. https://doi.org/10.1007/978-3-031-11058-0_142
- Nikhamkin M., Ilinykh A. Low cycle fatigue and crack grow in powder nickel alloy under turbine disk wave form loading: Validation of damage accumulation model. Applied Mechanics and Materials. 2014;467:312-316. https://doi.org/10.4028/www.scientific.net/AMM.467.312
- Yablonsky A.A., Nikiforova V.M. Course of theoretical mechanics. Moscow: KnoRus Publ.; 2011. (In Russ.) EDN: QJYXKR
- Hou J.-P., Wang Q., Yang H.-J., Wu X.-M., Li Ch.H., Zhang Zh.-F., Li X.W. Fatigue and Fracture behavior of a Cold-Drawn Commercially pure aluminum wire. Materials. 2016;9(9):764. https://doi.org/10.3390/ma9090764
- Wang Q., Ren J.Q., Wu Y.K., Jiang P., Sun Z.J., Liu X.T. Comparative study of crack growth behaviors of fullylamellar and bi-lamellar Ti-6Al-3Nb-2Zr-1Mo alloy. Journal of Alloys and Compounds. 2019;789:249-255. https://doi.org/10.1016/j.jallcom.2019.02.302
- Sadananda K., Babu M.N., Vasudevan A.K. A review of fatigue crack growth resistance in the short crack growth regime. Materials Science and Engineering: A. 2019;754:674-701. https://doi.org/10.1016/j.msea.2019.03.102
- Mall S., Perel V.Y. Crack growth behavior under biaxial fatigue with phase difference. International Journal of Fatigue. 2015;74:166-172. https://doi.org/10.1016/j.ijfatigue.2015.01.005
- Berto F., Ayatollahi M.R., Borsato T., Ferro P. Local strain energy density to predict size-dependent brittle fracture of cracked specimens under mixed mode loading. Theoretical and Applied Fracture Mechanics. 2016;86(Part B): 217-224. https://doi.org/10.1016/j.tafmec.2016.07.004
- Kaminsky A.A., Kurchakov E.E. Fracture Process Zone at the Tip of a Mode I Crack in a Nonlinear Elastic Orthotropic Material. International Applied Mechanics. 2019;55(1):23-40. https://doi.org/10.1007/s10778-019-00931-9
- Tumanov A.V., Shlyannikov V.N., Zakharov A.P. Crack growth rate prediction based on damage accumulation functions for creep-fatigue interaction. Fracture and Structural Integrity. 2020;14(52):299-309. https://doi.org/10.3221/IGF-ESIS.52.23
- Ghelichi R., Kamrin K. Modeling growth paths of interacting crack pairs in elastic media. Soft Matter. 2015;(11): 7995-8012. https://doi.org/10.1039/c5sm01376c
- Musayev V.K. Mathematical Modeling of Stresses Under Unsteady Wave Action in Geo-Objects. Power Technology and Engineering. 2023;57(3):351-364. https://doi.org/10.1007/s10749-023-01668-9
- Stepanova L.V., Roslyakov P.S. Multi-parameter description of the crack-tip stress field: analytic determination of coefficients of crack-tip stress expansions in the vicinity of the crack tips of two finite cracks in an infinite plane medium. International Journal of Solids and Structures. 2016;100-101:11-28. https://doi.org/10.1016/j.ijsolstr.2016.06.032
- Xu S., Xiong L., Deng Q., McDowell D.L. Mesh refinement schemes for the concurrent atomistic-continuum method. International Journal of Solids and Structure. 2016;90:144-152. https://doi.org/10.1016/j.ijsolstr.2016.03.030
- Carpinteri A., Brighenti R., Spagnoli A. Part-through cracks in pipes under cyclic bending. Nuclear Engineering and Design. 1998;185(1):1-14. https://doi.org/10.1016/S0029-5493(98)00189-7
- Carpinteri A., Brighenti R., Spagnoli A. Fatigue growth simulation of part-through flaws in thick-walled pipes under rotary bending. International Journal of Fatigue. 2000:22(1):1-9. https://doi.org/10.1016/S0142-1123(99)00115-2
- Musayev V.K. Mathematical Modeling of Explosive and Seismic Impacts on an Underground Structure. Power Technology and Engineering. 2024;57(6):875-881. https://doi.org/10.1007/s10749-024-01751-9
- Astafyev V.I., Radaev Yu.N., Stepanova L.V. Nonlinear mechanics of destruction. Samara: Samara National Research University named after Academician S.P. Krolev. 2001. (In Russ.) EDN: XDVQPF
Supplementary files
