Армирование колонн с использованием различных композитных материалов

Обложка

Цитировать

Полный текст

Аннотация

Внедрение в строительство композитных материалов, изготовленных путем объединения двух или более материалов с целью получения материала, обладающего улучшенными свойствами, по сравнению с отдельными компонентами, неуклонно растет в течение последних десятилетий. За это время произошел прогресс в технологии производства композитов, увеличился спрос на устойчивые и экологически чистые строительные материалы, а также потребность в материалах, являющихся легкими и удобными для транспортировки. По этой причине архитекторы и инженеры-строители включают композиты в конструктивные элементы для достижения желаемых целей и оптимизации стоимости строительства. Одним из наиболее распространенных композитных материалов, представленным в промышленности, является армированный волокнами полимер (FRP), полученный посредством объединения волокон (углерод, стекло или арамид) с полимерной матрицей (эпоксидная смола или полиэстер). Материалы FRP легкие, прочные и устойчивые к коррозии, что делает их идеальными для использования в самых разных областях строительства. Исследование нацелено на то, чтобы сравнить четыре различных метода в качестве жизнеспособного решения для укрепления и усиления конструкций колонн. Изучено структурное поведение трех различных композиционных материалов. В эксперименте для сравнения испытана одна традиционная бетонно-стальная колонна. Остальные три колонны усилены с использованием углепластика, стеклопластика и нержавеющей стали соответственно. Полученные экспериментальные результаты проанализированы, выполнено сравнение трех различных систем армирования для усиления колонн композитными материалами.

Об авторах

Галина Эриковна Окольникова

Российский университет дружбы народов; Национальный исследовательский Московский государственный строительный университет

Email: okolnikova-ge@rudn.ru
ORCID iD: 0000-0002-8143-4614

кандидат технических наук, доцент департамента строительства, инженерная академия, Российский университет дружбы народов; доцент кафедры железобетонных и каменных конструкций, Национальный исследовательский Московский государственный строительный университет

Москва, Российская Федерация

Светлана Болеславна Страшнова

Российский университет дружбы народов

Email: sstrashnova@mail.ru
ORCID iD: 0000-0002-2588-504X

кандидат химических наук, доцент, кафедра общей и неорганической химии, факультет физико-математических и естественных наук

Москва, Российская Федерация

Сиканьисиве Мерси Мабена

Российский университет дружбы народов

Email: mabhenasikha@gmail.com
ORCID iD: 0009-0005-9130-5823

магистрант, департамент строительства, инженерная академия

Москва, Российская Федерация

Станислав Викторович Страшнов

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: shtrafnoy@gmail.com
ORCID iD: 0000-0002-6401-2524

кандидат технических наук, заведующий кафедрой прикладной информатики и интеллектуальных систем в гуманитарной сфере, институт русского языка

Москва, Российская Федерация

Список литературы

  1. Zadeh H.J., Nanni A. Design of RC columns using glass FRP reinforcement. Journal of Composites for Construction. 2013;17(3):294-304. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000354
  2. Akguzel U., Pampanin S. Assessment and Design procedure for the seismic retrofit of reinforced concrete beam-column joints using FRP composite materials. Journal of Composites for Construction. 2012;16(1):21-34. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000242
  3. Mohamed H.M., Afifi M.Z., Benmokrane B. Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load. Journal of Bridge Engineering. 2014;19(7):04014020. http://doi.org/10.1061/(ASCE)BE.1943-5592.0000590
  4. Donnini J., Corinaldesi V. Concrete columns confined with different composite materials. MATEC Web of Conferences. 2018;199:09012. http://doi.org/10.1051/matecconf/201819909012
  5. Said A.M., Nehdi M.L. Use of FRP for RC frames in seismic zones. Part II. Performance of steel-free GFRP-reinforced beam-column joints. Applied Composite Materials. 2004;11(4):227-245. http://doi.org/10.1023/B:ACMA.0000035480.85721.b5
  6. Saravanan J., Kumaran G. Joint shear strength of FRP reinforced concrete beam-column joints. Open Engineering. 2011;1(1):89-102. http://doi.org/10.2478/s13531-011-0009-6
  7. Tobbi H., Farghaly A., Benmokrane B. Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios. ACI Structural Journal. 2014;111(2):375-386.
  8. Dawei Z., Qi Z., Xiaoguang F., Shengdun Z. Review on joining process of carbon fiber-reinforced polymer and metal: methods and joining process. Rare Metal Materials and Engineering. 2018;47(12):3686-96. http://doi.org/10.1016/S1875-5372(19)30018-9
  9. Yuan J., Ou Z. Research progress and engineering applications of stainless steel-reinforced concrete structures. Advances in Civil Engineering. 2021;2021:9228493. http://doi.org/10.1155/2021/9228493
  10. Wang H., Shi F., Shen J., Zhang A., Zhang L., Huang H., Liu J., Jin K., Feng L., Tang Zh. Research on the self-sensing and mechanical properties of aligned stainless steel fiber-reinforced reactive powder concrete. Cement and Concrete Composites. 2021;119:104001. https://doi.org/10.1016/j.cemconcomp.2021.104001
  11. Singh S., Angra S. Experimental evaluation of hygrothermal degradation of stainless-steel fibre metal laminate. Engineering Science and Technology, an International Journal. 2018;21(1):170-179. http://doi.org/10.1016/j.jestch.2018.01.002
  12. Rabi M., Cashell K.A., Shamass R. Flexural analysis and design of stainless steel reinforced concrete beams. Engineering Structures. 2019;198:109432. http://doi.org/10.1016/j.engstruct.2019.109432
  13. Ahmed K.S., Habib M.A., Asef M.F. Flexural response of stainless steel reinforced concrete beam. Structures. 2021;34:589-603. http://doi.org/10.1016/j.istruc.2021.08.019
  14. Li Q., Guo W., Liu C., Kuang Y., Geng H. Experimental and theoretical studies on flexural performance of stainless steel reinforced concrete beams. Advances in Civil Engineering. 2020;2020:e4048750. http://doi.org/10.1155/2020/4048750
  15. Chen C., Yang Y., Zhou Y., Xue C., Chen X., Wu H., Sui L., Li X. Comparative analysis of natural fiber reinforced polymer and carbon fiber reinforced polymer in strengthening of reinforced concrete beams. Journal of Cleaner Production. 2020;263:121572. http://doi.org/10.1016/j.jclepro.2020.121572

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».