The formula for the first natural frequency and the frequency spectrum of a spatial regular truss
- Autores: Kirsanov M.N.1
-
Afiliações:
- National Research University “MPEI”
- Edição: Volume 19, Nº 4 (2023)
- Páginas: 362-371
- Seção: Dynamics of structures and buildings
- URL: https://journals.rcsi.science/1815-5235/article/view/325827
- DOI: https://doi.org/10.22363/1815-5235-2023-19-4-362-371
- EDN: https://elibrary.ru/WCETZI
- ID: 325827
Citar
Texto integral
Resumo
A scheme of a statically determinate spatial truss is proposed. The gable cover of the structure is formed by isosceles rod triangles with supports in the form of racks on the sides. A formula is derived for the lower boundary of the structure’s first natural frequency under the assumption that its mass is concentrated in the nodes. To calculate the stiffness of the truss according to the Maxwell - Mohr formula, the forces in the rods are found by cutting out the nodes in an analytical form. The lower limit of the fundamental frequency is calculated using the Dunkerley partial frequency method. A series of solutions obtained for trusses with a different number of panels is generalized to an arbitrary order of a regular truss by induction using Maple symbolic mathematics operators. Comparison of the analytical solution with the numerical value of the first frequency of the spectrum shows good agreement between the results. The spectra of a series of regular trusses of various orders are analyzed. Two spectral constants of the problem are found, one of which is the highest frequency of truss vibrations, which does not depend on their order.
Sobre autores
Mikhail Kirsanov
National Research University “MPEI”
Autor responsável pela correspondência
Email: c216@ya.ru
ORCID ID: 0000-0002-8588-3871
Doctor of Physical and Mathematical Sciences, Professor of the Department of Robotics, Mechatronics, Dynamics and Strength of Machines
Moscow, Russian FederationBibliografia
- Han Q.H., Xu Y., Lu Y., Xu J., Zhao Q.H. Failure Mechanism of Steel Arch Trusses: Shaking Table Testing and FEM Analysis. Engineering Structures. 2015;82:186-198. https://doi.org/10.1016/J.ENGSTRUCT.2014.10.013
- Colajanni P., La Mendola L., Latour M., Monaco A., Rizzano G. FEM Analysis of Push-out Test Response of Hybrid Steel Trussed Concrete Beams (HSTCBs). Journal of Constructional Steel Research. 2015;111:88-102. https:// doi.org/10.1016/j.jcsr.2015.04.011
- Macareno L.M., Agirrebeitia J., Angulo C., Avilés R. FEM Subsystem Replacement Techniques for Strength Problems in Variable Geometry Trusses. Finite Elements in Analysis and Design. 2008;44:346-357. https://doi.org/10.1016/ j.finel.2007.12.003
- Belyankin N.A., Boyko A.Yu. Formulas for the deflection of a beam truss with an arbitrary number of panels under uniform loading. Structural mechanics and structures. 2019;1(20):21-29. (In Russ.) EDN: YZOZGH
- Tkachuk G.N. The formula for the dependence of the deflection of an asymmetrically loaded flat truss with rein- forced braces on the number of panels. Structural mechanics and structures. 2019;2(21):32-39. (In Russ.) EDN: JKKMFY
- Boyko A.Yu., Tkachuk G.N. Derivation of formulas for the dependence of the deflection of a flat articulated-rod frame on the number of panels in the Maple system. Structural mechanics and structures. 2019;4(23):15-25. (In Russ.) EDN: ZJDBGW
- Kirsanov M.N. Stress state and deformation of a rectangular spatial rod coating. Scientific Bulletin of the Voronezh State University of Architecture and Civil Engineering. Construction and architecture. 2016;1(41):93-100. (In Russ.) EDN: VNXUON
- Buka-Vaivade K., Kirsanov M.N., Serdjuks D.O. Calculation of deformations of a cantilever-frame planar truss model with an arbitrary number of panels. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2020;15(4):510-517. https://doi.org/10.22227/1997-0935.2020.4.510-517
- Kirsanov M.N. Evaluation of the deflection and stability of a spatial beam truss. Structural Mechanics and Analysis of Constructions. 2016;5(268):19-22. (In Russ.)
- Larichev S.A. Inductive analysis of the effect of building lift on the rigidity of a spatial beam truss. Collection of scientific and methodological articles “Trends in Applied Mechanics and Mechatronics”. Moscow: Infra-M Publ.; 2015;(1):4-8. (In Russ.) EDN: AZKRYX
- Hutchinson R.G., Fleck N.A. Microarchitectured cellular solids - the hunt for statically determinate periodic trusses. Journal of Applied Mathematics and Mechanics. 2005;85(9):607-617. https://doi.org/10.1002/zamm.200410208
- Hutchinson R.G., Fleck N.A. The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids. 2006;54(4):756-782. https://doi.org/10.1016/j.jmps.2005.10.008
- Zok F.W., Latture R.M., Begley M.R. Periodic truss structures. Journal of the Mechanics and Physics of Solids. 2016;96:184-203. https://doi.org/10.1016/j.jmps.2016.07.007
- Kaveh A., Rahami H., Shojaei I. Swift Analysis of Civil Engineering Structures Using Graph Theory Methods. Springer Cham Publ.; 2020, 290 p. https://doi.org/10.1007/978-3-030-45549-1
- Kaveh A., Hosseini S.M., Zaerreza A. Size, Layout, and Topology Optimization of Skeletal Structures Using Plasma Generation Optimization. Iranian Journal of Science and Technology. Transactions of Civil Engineering. 2020;45(2):513-543. https://doi.org/10.1007/S40996-020-00527-1
- Goloskokov D.P., Matrosov A.V. A Superposition Method in the Analysis of an Isotropic Rectangle. Applied Mathematical Sciences. 2016;10(54):2647-2660. https://doi.org/10.12988/ams.2016.67211
- Goloskokov D.P., Matrosov A.V. Comparison of two analytical approaches to the analysis of grillages. 2015 International Conference on “Stability and Control Processes” in Memory of V.I. Zubov, SCP 2015. Proceedings. 2015: 382-385. https://doi.org/10.1109/SCP.2015.7342169
- Kirsanov M.N. Planar Trusses: Schemes and Formulas. Cambridge Scholars Publishing. Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK; 2019. ISBN: (13):978-1-5275-3531-2
- Komerzan E.V., Sviridenko O.V. Analytical calculation of the deflection of a flat externally statically indeter- minate truss with an arbitrary number of panels. Structural mechanics and structures. 2021;2(29):29-37. (In Russ.) EDN: LJWUOW
- Dai Q. Analytical Dependence of Planar Truss Deformations on the Number of Panels. AlfaBuild. 2021;17:1701. https://doi.org/10.34910/ALF.17.1
- Kirsanov M., Luong C.L. Deformations and natural frequency spectrum of a planar truss with an arbitrary number of panels. AlfaBuild. 2022;25:2507. https://doi.org/10.57728/ALF.25.7
- Kirsanov M. Simplified Dunkerley method for estimating the first oscillation frequency of a regular truss. Construction of Unique Buildings and Structures. 2023;108:10801. https://doi.org/10.4123/CUBS.108.1
- Domanov E.V. Analytical dependence of the deflection of a spatial cantilever of a triangular profile on the number of panels. Science Almanac. 2016;6-2(19):214-217. (In Russ.) https://doi.org/10.17117/na.2016.06.02.214
- Petrichenko E.A. On the deflection of a cantilever truss with a cross-shaped lattice depending on the redistribution of the areas of the rods and the number of panels. Science Almanac. 2016;6-2(19):279-266. (In Russ.) https://doi.org/ 10.17117/na.2016.06.02.279
- Osadchenko N.V. Analytical solutions to the problems of deflection of flat arch-type trusses. Structural mechanics and structures. 2018;1(16):12-33. (In Russ.) EDN: YSLUGL
- Rutenberg A. A Lower Bound for Dunkerley’s Formula in Continuous Elastic Systems. Journal of Sound and Vibration. 1976;45(2):249-252. https://doi.org/10.1016/0022-460X(76)90599-X
- Low K.H. A Modified Dunkerley Formula for Eigenfrequencies of Beams Carrying Concentrated Masses. International Journal of Mechanical Sciences. 2000;42(7):1287-1305. https://doi.org/10.1016/S0020-7403(99)00049-1
- Komerzan E.V., Maslov A.N. Analytical estimation of the fundamental frequency of natural vibrations of a regular truss. Structural mechanics and structures. 2023;2(37):17-26. (In Russ.) https://doi.org/10.36622/VSTU.2023.37.2.002
- Shchigol E.D. Formula for the Lower Estimation of the Natural Oscillations of a Planar Regular Beam Truss with a Rectilinear Upper Chord. Structural mechanics and structures. 2023;2(37):46-53. (In Russ.) https://doi.org/10.36622/ VSTU.2023.37.2.005
- Manukalo A.S. Analysis of the value of the first frequency of natural vibrations of a flat trussed truss. Structural mechanics and structures. 2023;2(37):54-60. (In Russ.) https://doi.org/10.36622/VSTU.2023.37.2.006
- Komerzan E.V., Maslov A.N. Estimation of the fundamental oscillation frequency of an L-shaped spatial truss. Structural mechanics and structures. 2023;2(37):35-45. (In Russ.) https://doi.org/10.36622/VSTU.2023.37.2.004
Arquivos suplementares
