Theoretical and experimental modeling of deformation of a cylindrical shell made of 45 steel under complex loading

Capa

Citar

Texto integral

Resumo

Thin-walled cylindrical shells are used in elements of highly loaded products of mechanical engineering and energy. Along with their frequent use in production, experimental research in laboratories is also carried out constantly. This allows to simulate the behavior of the shell when exposed to external forces. But sometimes conducting an experiment becomes little possible due to the limitation of the power of the experimental apparatus when modeling the corresponding conditions of exposure to the shell in practice, therefore, improving theoretical methods for calculating the limiting states of shells when working in the elastoplastic region is relevant. The purpose of the study is to verify the conformity of the results of the experiment conducted on a thin-walled cylindrical shell made of steel 45 (GOST 1050-2013) when exposed to the sample by stretching, compression and torsion forces with theoretical calculations based on the equations of the theory of elastic-plastic processes by A.A. Ilyushin. The equations of the defining relations of the theory of elastic-plastic processes by A.A. Ilyushin for arbitrary trajectories of complex loading and deformation of materials in the deviatory deformation space Э1-Э3 are presented. All theoretical results are checked for compliance with the experiment, the reliability of the existing theory of stability is assessed. The solution is presented in the form of graphs of the dependence of the vector and scalar properties of the material on the length of the arc of the deformation trajectory and other parameters. Numerical values are selectively presented for different loading stages.

Sobre autores

Stepan Cheremnykh

Tver State Technical University

Autor responsável pela correspondência
Email: cheremnykh_s.v@mail.ru
ORCID ID: 0000-0002-4620-117X

Candidate of Technical Sciences, senior lecturer of the Department of Structures

22 Af. Nikitina Naberezhnaya, Tver, 170026, Russian Federation

Bibliografia

  1. Gultyaev V.I., Alekseev A.A., Savrasov I.A., Subbotin S.L. Experimental verification of the isotropy postulate on orthogonal curved trajectories of constant curvature. Lecture Notes in Civil Engineering. 2021;151:315-321. http://doi.org/10.1007/978-3-030-72910-3_46
  2. Zubchaninov V.G., Alekseev A.A., Alekseeva E.G., Gultiaev V.I. Experimental verification of postulate of isotropy and mathematical modeling of elastoplastic deformation processes following the complex angled nonanalytic trajectories. Materials Physics and Mechanics. 2017;32(3):298-304.
  3. Bazhenov V.G., Osetrov S.L., Osetrov D.L. Analysis of stretching of elastoplastic samples and necking with edge effects. Journal of Applied Mechanics and Technical Physics. 2018;59(4):693-698. http://doi.org/10.1134/S0021894418040168
  4. Gan Y., Su J., Zhong K., Zhang Q., Long R., Liang H., Zhang X. Dynamic responses of metal shell and fiber-reinforced composite shell subjected to internal blast loading. Binggong Xuebao. 2020;41(2):128-134. http://doi.org/10.3969/j.issn.1000-1093.2020.S2.017
  5. Kilymis D., Gérard C., Pizzagalli L. Ductile deformation of core-shell Si-Sic nanoparticles controlled by shell thickness. Acta Materialia. 2019;164:560-567. http://doi.org/10.1016/j.actamat.2018.11.009
  6. Abashev D.R., Bondar V.S. Modified theory of plasticity for monotonic and cyclic deformation processes. Proceedings of the Russian Academy of Sciences. Solid State Mechanics. 2021;(1):6-16. (In Russ.) http://doi.org/10.31857/S0572329921010025
  7. Bondar V.S., Dansin V.V., Vu L.D., Duc N.D. Constitutive modeling of cyclic plasticity deformation and low - high-cycle fatigue of stainless steel 304 in uniaxial stress state. Mechanics of Advanced Materials and Structures. 2018;25(12):1009-1017. http://dx.doi.org/:10.1080/15376494.2017.1342882
  8. Bazhenov V.G., Nagornykh E.V., Samsonova D.A. Study of the applicability of the Vinkler base model to describe the contact interaction of elastoplastic shells with a filler under external pressure. Bulletin of Perm National Research Polytechnic University. Mechanics. 2020;(4):36-48. (In Russ.) http://doi.org/10.15593/perm.mech/2020.4.04
  9. Bazhenov V.G., Baranova M.S., Osetrov D.L., Ryabov A.A. Method for determining friction forces in experiments on shock compression and construction of dynamic stress-strain diagrams of metals and alloys. Doklady Physics. 2018;63(8):331-333. http://doi.org/10.1134/S1028335818080049
  10. Bazhenov V.G., Gonik E.G., Kibets A.I., Petrov M.V., Fedorova T.G., Frolova I.A. Stability and supercritical behaviour of thin-walled cylindrical shell with discrete aggregate in bending. Materials Physics and Mechanics. 2016;28(1-2):16-20.
  11. Grigoryeva A.L., Grigoryev Y.U., Khromov A.I. Tensile model of a shell-type flat plate at different displacement velocity fields. Lecture Notes in Networks and Systems. 2021;200:147-156. http://doi.org/10.1007/978-3-030-69421-0_16
  12. Alekseev A.A. Modeling of the process of elastic-plastic deformation of steel 45 along the trajectories of the Archimedes spiral type. Computational Continuum Mechanics. 2021;14(1):102-109. (In Russ.) http://doi.org/10.7242/1999-6691/2021.14.1.9
  13. Zubchaninov V.G., Alekseev A.A., Gultyaev V.I. The effect of replacing nonanalytical trajectories with break points with smooth trajectories on the complexity of the processes of deformation and loading of materials. Bulletin of Perm National Research Polytechnic University. Mechanics. 2020;(2):52-63. (In Russ.) http://doi.org/10.15593/perm.mech/2020.2.05
  14. Zubchaninov V.G., Alekseeva E.G., Alekseev A.A., Gultiaev V.I. Modeling of elastoplastic steel deformation in two-link broken trajectories and delaying of vector and scalar material properties. Materials Physics and Mechanics. 2019;42(4):436-444. http://doi.org/10.18720/MPM.4242019_8
  15. Zubchaninov V.G., Alekseev A.A., Gultyaev V.I., Alekseeva E.G. Processes of complex loading of structural steel along a five-link piecewise polyline deformation trajectory. Bulletin of Tomsk State University. Mathematics and Mechanics. 2019;61:32-44. (In Russ.) http://doi.org/10.17223/19988621/61/4
  16. Zubchaninov V.G., Gultiaev V.I., Alekseev A.A., Garanikov V.V., Subbotin S.L. Testing of steel 45 under complex loading along the cylindrical screw trajectories of deformation. Materials Physics and Mechanics. 2017;32(3):305-311.
  17. Zubchaninov V.G., Alekseev A.A., Gultyaev V.I. Modeling of the processes of elastic-plastic deformation of materials along multi-link piecewise polyline trajectories. Bulletin of Perm National Research Polytechnic University. Mechanics. 2017;(3):203-215. (In Russ.) http://doi.org/10.15593/perm.mech/2017.3.12
  18. Zubchaninov V.G., Alekseev A.A., Alekseeva E.G. Mathematical modeling of plastic deformation processes of materials along complex flat trajectories. Physics and Mechanics of Materials. 2015;24(2):107-118. (In Russ.)
  19. Zubchaninov V.G., Alekseev A.A., Gultyaev V.I. About drawing of the yield surface for steel 45 and verification of the postulate of isotropy on straight-line paths during repeatedsign-variable loadings. PNRPU Mechanics Bulletin. 2014;3:71-88. http://doi.org/10.15593/perm.mech/2014.3.05
  20. Cheremnykh S., Zubchaninov V., Gultyaev V. Deformation of cylindrical shells of steel 45 under complex loading. E3S Web of Conferences. 22nd International Scientific Conference on Construction the Formation of Living Environment, FORM 2019. 2019. http://doi.org/10.1051/e3sconf/20199704025
  21. Abrosimov N.A., Elesin A.V., Igumnov L. Computer simulation of the process of loss of stability of composite cylindrical shells under combined quasi-static and dynamic loads. Advanced Structured Materials. 2021;137:125-137. http://doi.org/10.1007/978-3-030-53755-5_9
  22. Ilyushin A.A. Continuum mechanics. Moscow: MSU Publ.; 1990. (In Russ.)
  23. Zubchaninov V.G. On the main hypotheses of the general mathematical theory of plasticity and the limits of their applicability. Mechanics of Solids. 2020;55(6):820-826. http://doi.org/:10.3103/S0025654420060163
  24. Zubchaninov V.G. The general mathematical theory of plasticity and the Il’yushin postulates of macroscopic definability and isotropy. Moscow University Mechanics Bulletin. 2018;73(5):101-116. http://doi.org/10.3103/S0027133018050011
  25. Bondar V.S. Theory of plasticity without surface of loading. Materials Physics and Mechanics. 2015;23(1):1-4.
  26. Cheremnykh S.V. Experimental study of elastic-plastic deformation of a cylindrical shell made of steel 45. Structural Mechanics of Engineering Constructions and Buildings. 2021;17(5):519-527. (In Russ.) http://doi.org/10.22363/1815-5235-2021-17-5-519-527
  27. Cheremnykh S., Kuzhin M. Solution of the problem of stability of 40x steel shell. Journal of Physics: Conference Series. International Scientific Conference on Modelling and Methods of Structural Analysis, MMSA 2019. 2020. http://doi.org/10.1088/1742-6596/1425/1/012191
  28. Klochkov Y.V., Vakhnina O.V., Sobolevskaya T.A., Nikolaev A.P., Fomin S.D., Klochkov M.Y. A finite elemental algorithm for calculating the arbitrarily loaded shell using three-dimensional finite elements. ARPN Journal of Engineering and Applied Sciences. 2020;15(13):1472-1481.
  29. Eremeyev V.A. A nonlinear model of a mesh shell. Mechanics of Solids. 2018;53(4):464-469. http://doi.org/10.3103/S002565441804012X
  30. Klochkov Y.V., Nikolaev A.P., Sobolevskaya T.A., Klochkov M.Y. Comparative analysis of plasticity theory algorithms in finite-element calculations of the rotation shell. Materials Science Forum. 2019;974:608-613. http://doi.org/10.4028/www.scientific.net/MSF.974.608
  31. Yakupov N.M., Kiyamov H.G., Mukhamedova I.Z. Simulation of toroidal shell with local defect. Lobachevskii Journal of Mathematics. 2020;41(7):1310-1314. http://doi.org/:10.1134/S1995080220070434
  32. Danescu A., Ionescu I.R. Shell design from planar pre-stressed structures. Mathematics and Mechanics of Solids. 2020;25(6):1247-1266. http://doi.org/10.1177/1081286520901553

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».