Предварительное вариантное проектирование конструкций в виде оболочек зонтичного типа
- Авторы: Тупикова Е.М.1, Ершов М.Е.1
-
Учреждения:
- Российский университет дружбы народов
- Выпуск: Том 17, № 4 (2021)
- Страницы: 414-424
- Раздел: Расчет тонких упругих оболочек
- URL: https://journals.rcsi.science/1815-5235/article/view/325671
- DOI: https://doi.org/10.22363/1815-5235-2021-17-4-414-424
- ID: 325671
Цитировать
Полный текст
Аннотация
Для создания эстетически выразительных и функциональных малых архитектурных форм целесообразно применение железобетонных или композитных оболочек зонтичного типа в виде поверхностей, которые могут быть заданы в аналитической форме. Разные аналитические поверхности визуально похожи, но при этом значительно отличаются в плане работы под нагрузкой. Малые архитектурные формы являются подходящей областью применения для недостаточно изученных и апробированных конструкций, в отличие от крупных ответственных сооружений. Приводится пример вариантного проектирования небольшого садово-паркового сооружения в виде оболочки зонтичного типа, в ходе которого были проанализированы разные виды зонтичных поверхностей и выбраны три варианта. В числе исследуемых форм такие поверхности, как параболоид вращения, поверхность зонтичного типа с синусоидальной образующей, поверхность зонтичного типа с радиальными волнами, образованная кубическими параболами (с центральной плоскостной точкой). Произведены расчет на прочность и исследование распределения напряжений для трех оболочек, шарнирно закрепленных по краям, при действии собственного веса при помощи метода конечных элементов и выявлены особенности работы под нагрузкой каждого вида конструкций, даны рекомендации при проектировании аналогичных сооружений.
Об авторах
Евгения Михайловна Тупикова
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: tupikova-em@rudn.ru
ORCID iD: 0000-0001-8742-3521
кандидат технических наук, доцент департамента строительства, Инженерная академия
Российская Федерация, 117198, Москва, Миклухо-Маклая, д. 6Михаил Евгеньевич Ершов
Российский университет дружбы народов
Email: 1032182369@rudn.ru
ORCID iD: 0000-0002-2788-3865
студент, департамент строительства, Инженерная академия
Российская Федерация, 117198, Москва, Миклухо-Маклая, д. 6Список литературы
- Bhooshan S., Ladinig J., Van Mele T., Block P. Function representation for robotic 3D printed concrete, ROBARCH 2018 - Robotic Fabrication in Architecture, Art and Design. Zurich: Springer; 2018. p. 98-109.
- Bhooshan S., Van Mele T., Block P. Equilibrium-aware shape design for concrete printing. In: De Rycke K. et al. (eds.) Humanizing Digital Reality: Proceedings of the Design Modelling Symposium 2017. Paris: Springer; 2018. p. 493-508.
- Mamieva I.A. Large-span structures in diploma projects of students architects of RUDN University. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(3):233-240. (In Russ.) http://dx.doi.org/10.22363/1815-5235-2020-16-3-233-240
- Krivoshapko S.N., Mamieva I.A. Umbrella surfaces and surfaces of umbrella type in architecture. Industrial and Civil Engineering. 2011;7(1):27-31. (In Russ.)
- Bock Hyeng Ch.A., Krivoshapko S.N. Umbrella-type surfaces in architecture of spatial structures. IOSR Journal of Engineering (IOSRJEN). 2013;3(3):43-53.
- Kozyreva A.A. Umbrella type surface. From the beginnings to the present. Forum Molodyh Uchenyh. 2017;5(9): 1037-1042. (In Russ.)
- Romanova V.A. Visualization of the formation of umbrella surfaces and umbrella-type surfaces with radial waves damping at the central point. Structural Mechanics of Engineering Constructions and Buildings. 2015;(3):4-8. (In Russ.)
- Krivoshapko S.N. New examples of umbrella type surfaces and their coefficients of general fundamental forms. Structural Mechanics of Engineering Constructions and Buildings. 2005;(2):6-14. (In Russ.)
- Krivoshapko S.N. Geometrical investigations of umbrella surfaces. Structural Mechanics of Engineering Constructions and Buildings. 2005;(1):11-17. (In Russ.)
- Chepurnenko A.S., Kochura V.G., Saibel A.V. Finite-elemental analysis of the stress-deformed condition of waveform shells. Construction and Industrial Safety. 2018;11(63):27-31. (In Russ.)
- Huang H., Guan F.L., Pan L.L., Xu Y. Design and deploying study of a new petal-type deployable solid surface antenna. Acta Astronautica. 2018;148:99-110. http://dx.doi.org/10.1016/j.actaastro.2018.04.042
- Ponomarev S.V. Transformable reflectors of spacecraft antennas. Tomsk State University Journal. 2011;4(16): 110-119. (In Russ.)
- Gureeva N.A., Klochkov Yu.V., Nikolaev A.P. Calculation of shells of revolution based on a mixed fem for the tensor approximation of the nodal unknowns. Fundamental Research. 2011;8-2:356-362. (In Russ.)
- Ivanov V.N., Abbushi N.Y. Architecture and construction of shells in the form of wavy, umbrella and channel surfaces of Joachimstal. Montazhnye i Specialnye Raboty v Stroitelstve. 2002;6:21-24. (In Russ.)
- Sahu R.R., Gupta P.K. Blast diffusion by different shapes of domes. Defense Science Journal. 2015;65(1):77-82. http://dx.doi.org/10.14429/dsj.65.6908
- Zingoni A. Shell structures in civil and mechanical engineering: theory and analysis. London: ICE Publ.; 2018.
- Rabello F.T., Marcellino N.A., Loriggio D.D. Automatic procedure for analysis and geometry definition of axisymmetric domes by the membrane theory with constant normal stress. Rev. IBRACON Estrut. Mater. 2016;9(4):544-571. http://dx.doi.org/10.1590/S1983-41952016000400005
- Krivoshapko S.N. The opportunities of umbrella-type shells. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(4):271-278. http://dx.doi.org/10.22363/1815-5235-2020-16-4-271-278
- Ivanov V.N. Analysis of stress-strain state of roofing of trade centre in the form of umbrella shell by difference variation method. Structural Mechanics of Engineering Constructions and Buildings. 2008;(4):86-89. (In Russ.)
- Abboushi N.Y.A. Numerical analysis of Joachimsthal’s canal surfaces on a gravity load by variation-difference method. Shells in Architecture and Strength Analysis of Thin-Walled Civil-Engineering and Machine-Building Constructions of Complex Forms: Proc. of Int. Scientific Conference (Moscow, June 4-8, 2001). Moscow: RUDN University Publ.; 2001. p. 297-306. (In Russ.)
- Liu F., Feng R. Shape optimization of single-layer reticulated structure considering influence of structural imperfection sensitivity. Proceedings of IASS Annual Symposia, IASS 2018 Boston Symposium: Computational Methods. Madrid: IASS Publ.; 2018. p. 1-6.
- Zhu S., Ohsaki M., Guo X., Zeng Q. Shape optimization for non-linear buckling load of aluminum alloy reticulated shells with gusset joints. Thin-Walled Structures. 2020;154:106830. http://dx.doi.org/10.1016/j.tws.2020.106830
- Van Mele T., Rippmann M., Lachauer L. Geometry-based understanding of structures. Journal of the International Association for Shell and Spatial Structures. 2012;53(174):1-5.
- Gmyrach K.M., Kozlov A.V., Proskurov R.A. Selection of optimal parameters of an ellipsoid reinforced concrete shell of rotation. International Research Journal. 2017;2-3(56):100-104. (In Russ.) http://dx.doi.org/10.23670/IRJ.2017.56.049
- Draper P., Garlock M.E.M., Billington D.P. Structural optimization of Félix Candela’s hypar umbrella shells. Journal of the International Association for Shells and Spatial Structures. 2012;51(1):59-66.
- Abdessalem J., Fakhreddine D., Said A., Mohamed H. Shape optimization for a hyperelastic axisymmetric structure. Journal of Engineering, Design and Technology. 2014;12(2):177-194.
- Krivoshapko S.N., Ivanov V.N. Simplified selection of optimal shell of revolution. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(6)438-448. (In Russ.) http://dx.doi.org/10.22363/1815-5235-2019-15-6-438-448
Дополнительные файлы
