The stability of geometrically nonlinear plate systems under the action of dynamic loads

Обложка

Цитировать

Полный текст

Аннотация

Актуальность. Односвязные и многосвязные пластинчатые системы часто используют в строительстве, авиастроении, кораблестроении, машиностроении, приборостроении. Вследствие этого исследование устойчивости геометрически нелинейных пространственных пластинчатых систем является актуальной темой как при действии статических, так и динамических нагрузок. Но, несмотря на значительные достижения в этой области, имеется еще много нерешенных проблем. Так, запросы вышеуказанных областей применения тонкостенных пространственных систем требуют дальнейшего исследования статической и динамической устойчивости. Цель - разработка метода расчета на устойчивость геометрически нелинейных пластинчатых систем типа призматических оболочек под действием динамических сжимающих нагрузок. Методы. Рассматривается пластинчатая система, на которую в продольном направлении действуют динамические сжимающие нагрузки. Учитываются гипотезы Кирхгофа - Лява. Геометрическая нелинейность вводится через соотношения между деформациями и перемещениями. Диаграмма деформирования материала - линейная. Перемещение точек в нормальном направлении к срединной плоскости пластин определяется в виде разложения по Власову. Для решения задачи используются энергетический метод и вариационный метод Власова. Экстремальное значение полной энергии определяется с использованием уравнений Эйлера - Лагранжа. В результате получена система основных нелинейных дифференциальных уравнений для исследования потери устойчивости пластинчатой системы под действием динамических сжимающих нагрузок. Результаты. Разработанный метод применяется для расчета на устойчивость геометрически нелинейной призматической оболочки с замкнутым контуром поперечного сечения при центральном сжатии под действием динамической нагрузки. Края оболочки опираются на диафрагмы. Исследуется потеря устойчивости призматической оболочки в продольном направлении по одной и двум полуволнам синусоиды. Численное интегрирование нелинейных дифференциальных уравнений выполняется методом Рунге - Кутта. По результатам расчетов построены графики зависимости относительной величины прогиба от динамического коэффициента. Рассмотрено влияние скорости изменения сжимающего напряжения, начального несовершенства оболочки и других параметров на критерий динамической устойчивости пластинчатой системы.

Об авторах

Сергей Павлович Иванов

Поволжский государственный технологический университет; Марийский государственный университет

Автор, ответственный за переписку.
Email: sp-ivanov@mail.ru

доктор технических наук, профессор, заведующий кафедрой сопротивления материалов и прикладной механики ПГТУ; профессор кафедры электромеханики МарГУ

Российская Федерация, 424000, Йошкар-Ола, пл. Ленина, 3; Российская Федерация, 424000, Йошкар-Ола, пл. Ленина, 1

Анастасия Сергеевна Иванова

Поволжский государственный технологический университет

Email: sp-ivanov@mail.ru

старший преподаватель, кафедра сопротивления материалов и прикладной механики

Российская Федерация, 424000, Йошкар-Ола, пл. Ленина, 3

Олег Геннадьевич Иванов

Поволжский государственный технологический университет

Email: sp-ivanov@mail.ru

кандидат технических наук, доцент, доцент кафедры сопротивления материалов и прикладной механики

Российская Федерация, 424000, Йошкар-Ола, пл. Ленина, 3

Список литературы

  1. Ivanov S.P., Ivanova A.S. Prilozheniye variacionnogo metoda V.Z. Vlasova k resheniyu nelinejnykh zadach plastinchatykh system [Application of V.Z. Vlasov's variational method to solving nonlinear problems of plate systems]. Yoshkar-Ola: PGTU Publ.; 2015. (In Russ.)
  2. Vlasov V.Z. Tonkostennye prostranstvennye sistemy [Thin-Walled spatial systems]. Moscow: Gosstrojizdat Publ.; 1958. (In Russ.)
  3. Ivanov S.P., Ivanova A.S. The dynamic stability of physically nonlinear plate systems. Structural Mechanics of Engineering Constructions and Buildings. 2014;(4):11–20. (In Russ.)
  4. Ivanov S.P., Ivanov O.G., Ivanova A.S. The dynamic stability of physically nonlinear plate systems under biaxial compression. Structural Mechanics of Engineering Constructions and Buildings. 2018;(2):132–141. (In Russ.)
  5. Volmir A.S. Ustojchivost' deformiruemyh sistem [Stability of deformable systems]. Moscow: Nauka Publ.; 1967. (In Russ.)
  6. Volmir A.S. Ustojchivost' deformiruemyh sistem [Nonlinear dynamic of plats and shells]. Moscow: Nauka Publ.; 1972. (In Russ.)
  7. Khamitov T.K., Fatykhova R.R. On stability of elastic-plastic cylindrical shell under longitudinal impact. News of the KSUAE. 2016;(4):490–496. (In Russ.)
  8. Trushin S.I., Sysoeva E.V., Zhuravleva T.A. The stability of nonlinear deformable cylindrical composite shells under non-uniform loads. Structural Mechanics of Engineering Constructions and Buildings. 2013;(2):3–10. (In Russ.)
  9. Trushin S.I., Zhuravleva T.A., Sysoeva E.V. Dynamic buckling of nonlinearly deformable reticulate plates from composite material with different lattice configurations. Nauchnoe obozrenie [Scientific review]. 2016;(4):44–51. (In Russ.)
  10. Vescovini R., Dozio L. Exact refined buckling solutions for laminated plates under uniaxial and biaxial loads. Composite Structures. 2015;(12):356–368.
  11. Nazarimofrad E., Barkhordar A. Buckling analysis of orthotropic rectangular plate resting on Pasternak elastic foundation under biaxial in-plane loading. Mechanics of Advanced Materials and Structures. 2016;23(10):1144–1148.
  12. Ruocco E., Reddy J.N. A closed-form solution for buckling analysis of orthotropic Reddy plates and prismatic plate structures. Composites Part B: Engineering. 2019;(169): 258–273.
  13. Lukash, P.A. Osnovy nelinejnoj stroitel’noj mekhaniki [Fundamentals of nonlinear structural mechanics]. Moscow: Strojizdat Publ.; 1978. (In Russ.)
  14. Kosytsyn S.B., Akulich V.Yu. The definition of the critical buckling load beam model and two-dimensional model of the round and two-dimensional model of the round cylindrical shell that interact with the soil. Structural Mechanics of Engineering Constructions and Buildings. 2019; 15(4):291–298. http://dx.doi.org/10.22363/1815-5235-2019- 15-4-291-298 (In Russ.)
  15. Manuylov G.A., Kositsyn S.B., Grudtsyna I.E. Numerical analysis of stability of the stiffened plates subjected aliquant critical loads. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(1):54–61. http://dx. doi.org/10.22363/1815-5235-2020-16-1-54-61 (In Russ.)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».