Новые операционные соотношения и их применение к решению нестационарных задач для стержней на основе теории С.П. Тимошенко
- Авторы: Зоненберг А.Л.1
-
Учреждения:
- АО «ЦНИИЭП жилища - Институт комплексного проектирования жилых и общественных зданий»
- Выпуск: Том 16, № 1 (2020)
- Страницы: 62-75
- Раздел: Динамика конструкций и сооружений
- URL: https://journals.rcsi.science/1815-5235/article/view/325600
- DOI: https://doi.org/10.22363/1815-5235-2020-16-1-62-75
- ID: 325600
Цитировать
Полный текст
Аннотация
Актуальность. Для исследования переходных волновых процессов деформации в стержнях на основе теории С.П. Тимошенко необходимо иметь точные аналитические решения нестационарных задач в общем виде. Каждое точное решение в рамках данной аналитической модели является точным описанием реального процесса и служит критерием при оценке точности приближенных решений. При использовании операционного исчисления для анализа бегущих волн наибольшие трудности представляет именно этап перехода от изображения к начальной функции (оригиналу). Из опубликованных работ следует, что имеющиеся решения некоторых частных задач либо имеют структуру, которая не позволяет судить об основных чертах исследуемого процесса, либо их эффективность при вычислениях достигается только в некоторых довольно ограниченных областях значений координаты и времени. Эта проблема, требующая разрешения, определила цель настоящей статьи. Цель. Статья посвящена разработке новых операционных соотношений и их применению к построению точных аналитических решений нестационарных задач теории С.П. Тимошенко для стержней в общем виде в физически наглядной и удобной для практических расчетов форме. Методы. В работе использованы методы теории функций комплексного переменного, операционное исчисление на основе интегрального преобразования Лапласа - Карсона, методы динамики сооружений. Результаты. В общем виде сформулированы три типа нестационарных задач для полубесконечного стержня на основе теории Тимошенко. Получены новые операционные соотношения. На основе этих соотношений разработан способ нахождения оригиналов без использования общей формулы обращения. Решения задач записываются в виде интегралов от бесселевых функций и в отличие от решений, имеющихся в литературе, ясно показывают волновой характер изучаемых процессов, имеют наглядный и компактный вид. В статье рассмотрен пример расчета.
Об авторах
Александр Леонидович Зоненберг
АО «ЦНИИЭП жилища - Институт комплексного проектирования жилых и общественных зданий»
Автор, ответственный за переписку.
Email: zonenberg@list.ru
главный специалист-инженер, отдел конструкций жилых и общественных зданий
Российская Федерация, 127434, Москва, Дмитровское шоссе, д. 9, стр. 3Список литературы
- Kolsky H. Volny napryazheniya v tverdyh telah [Stress waves in solids]. Moscow: Izd-vo inostrannoi literatury Publ.; 1955. (In Russ.)
- Timoshenko S.P. Kurs teorii uprugosti [Course in the Theory of Elasticity]. Kiev: Naukova dumka Publ.; 1972. (In Russ.)
- Grigolyuk E.I., Selezov I.T. Neklassicheskie teorii kolebanij sterzhnej, plastin i obolochek [Nonclassical Theories of Vibrations of Bars, Plates and Shells]. Advances in Sciences and Engineering. Mechanics of Deforming Solids. Moscow: VINITI Publ.; 1973. (In Russ.)
- Selezov I.T. O razvitii teorii Timoshenko poperechnyh kolebanij uprugih sterzhnej [On the development of the Timoshenko theory of transversal oscillations of elastic rods]. Journal of Machinery Manufacture and Reliability. 2016;45(1):13–20.
- Su Yu-Chi, Ma Chien-Ching. Theoretical analysis of transient waves in a simply-supported Timoshenko beam by ray and normal mode methods. International Journal of Solids and Structures. 2001;48(3–4):535–552.
- Su Yu-Chi, Ma Chien-Ching. Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods. International Journal of Solids and Structures. 2012;49(9): 1158–1176.
- Wang X.Q., So R.M.C. Timoshenko beam theory: A perspective based on the wave-mechanics approach. Wave Motion. 2015;57:64–87.
- Abramyan A.K., Indeitsev D.A., Postnov V.A. Running and Standing Waves of Timoshenko Beam. Mechanics of Solids. 2018;53(2):203–210.
- Slepyan L.I., Yakovlev Yu.S. Integral'nye preobrazovaniya v nestacionarnyh zadachah mekhaniki [Integral Transformations in Non-Stationary Problems of Mechanics]. Leningrad: Sudostroenie Publ.; 1980. (In Russ.)
- Leonard R.W., Budiansky B. On traveling waves in beams. NACA Repts. 1954;(1173):389–415.
- Dengler M.A. Transversale Wellen in Stäben und Platten unter stoßförmiger Belastung. Österr. Ing.-Arch. 1956;10(1):39–66.
- Flügge W., Zajac E.E. Bending impact waves in beams. Ingenieur-Archiv. 1959;28(1):59–70.
- Lurie A.I. Operacionnoe ischislenie i ego prilozheniya k zadacham mekhaniki [Operational Calculus and its Application to the Problems in Mechanics]. Moscow, Leningrad: Gostekhizdat Publ.; 1950. (In Russ.)
- Ditkin V.A., Prudnikov A.P. Spravochnik po operacionnomu ischisleniyu [Handbook of operational calculations]. Moscow: Vysshaya shkola Publ.; 1965. (In Russ.)
- Ditkin V.A., Prudnikov A.P. Operacionnoe ischislenie [Operational calculus]. Moscow: Vysshaya shkola Publ.; 1966. (In Russ.)
- Doetsch G. Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa [Guide to the Applications of Laplace Transforms]. Moscow: Nauka Publ.; 1965. (In Russ.)
- Efros A.M., Danilevsky A.M. Operacionnoe ischislenie i konturnye integraly [Operational Сalculus and Contour Integrals]. Kharkiv: Gos. nauch.-tekhn. izd-vo Publ.; 1937. (In Russ.)
- Watson G.N. Teoriya besselevyh funkcij [А treatise on the theory of Bessel functions]. Part 1. Moscow: Izd-vo inostrannoi literatury; 1949. (In Russ.)
- Fikhtengol'ts G.M. Osnovy matematicheskogo analiza [Foundations of mathematical analysis]. Vol. 2. Moscow: Nauka Publ.; 1964. (In Russ.)
- Uflyand Ya.S. Rasprostranenie voln pri poperechnyh kolebaniyah sterzhnej i plastin [Wave propagation in rods and plates undergoing transverse vibrations]. Prikladnaya matematika i mekhanika [J. Appl. Math. Mech.]. 1948; 12(3):287–300. (In Russ.)
- Sagartz M.J., Forrestal M.J. Bending stresses propagating from the clamped support of an impulsively loaded beam. AIAA Journal. 1972;10(10):1373–1374. (Publ. online 17 May 2012). https://doi.org/10.2514/3.6628
Дополнительные файлы
