Surfaces with a main framework of three given curves which include one circle

Cover Page

Cite item

Full Text

Abstract

Superellipses are becoming more and more in demand in various branches of science and national economy due to their versatility. They found the most application in shipbuilding. Suggestions for the use of superellips in architecture and construction have appeared recently. The author proposes explicit and parametric equations of surfaces with a main framework of three predetermined superellips lying in three coordinate planes. These equations describe a large set of analytical shapes suitable for the formation middle surfaces of thin building shells. One of the superellipses is taken in a form of a circle. The shells can be designed on circular and rhombic plans, and also on plans in the shape of superellips of general type with convex and concave sides. All recommended surfaces are illustrated in 24 examples using computer graphics. A network of curvilinear non-orthogonal coordinates is generated on the surfaces using dimensionless independent parameters. The considered surfaces can become a part of the reserve of surfaces for further application in real structures and facilities.

About the authors

Sergey N. Krivoshapko

RUDN University

Author for correspondence.
Email: sn_krivoshapko@mail.ru
ORCID iD: 0000-0002-9385-3699

DSc, Professor of the Department of Civil Engineering, Academy of Engineering

Moscow, Russian Federation

References

  1. Ko K.H. A survey: application of geometric modeling techniques to ship modeling and design. International Journal of Naval Architecture and Ocean Engineering. 2010;2(4):177-184. http://doi.org/10.2478/IJNAOE-2013-0034
  2. Avdonev E.Ya. Mathematical model of hull surface. Prikladnaya Geometriya i Inzhenernaya Grafika (issue 28). Kiev; 1979. p. 46-49. (In Russ.)
  3. Karnevich V.V. Hydrodynamic surfaces with midship section in the form of the Lame curves. RUDN Journal of Engineering Research. 2021;22(4):323-328. https://doi.org/10.22363/2312-8143-2021-22-4-323-328
  4. Ma Y.Q., Wang C.M., Ang K.K. Buckling of superellipsoidal shells under uniform pressure. Thin-Walled Structures. 2008;46(6):584-591. http://doi.org/10.1016/j.fws.2008.01.013
  5. Moonesun M., Mahdion A., Korol Yu.M., Dadkhah M., Javadi M.M. Concepts in submarine shape design. Indian Journal of Geo-Marine Sciences. 2016;45(1):100-104.
  6. Krivoshapko S.N. Algebraic ship hull surfaces with a main frame from three plane curves in coordinate planes. RUDN Journal of Engineering Research. 2022;23(3):207-212. (In Russ.) http://doi.org/10.22363/2312-8143-2022-23-3-207-212
  7. Krivoshapko S.N., Aleshina O.O., Ivanov V.N. Static analysis of shells with middle surfaces containing the main frame from three given superellipses. Structural Mechanics and Analysis of Constructions. 2022;(6):18-27. (In Russ.) http://doi.org/10.37538/0039-2383.2022.6.18.27
  8. Strashnov S.V. Computer simulation of new forms of shell structures. Geometry & Graphics. 2022;(4):26-34. (In Russ.) https://doi.org/10.12737/2308-4898-2022-10-4-26-34
  9. Erbaş K.C. Surface area of superellipsoids and its application to physics problems. New Applications in Basic Sciences. Iksad Publishing House; 2022. p. 39-63.
  10. Elishakoff I., Elettro F. Interval, ellipsoidal, and super-ellipsoidal calculi for experimental and theoretical treatment of uncertainty: which one ought to be preferred? International Journal of Solids and Structures. 2014;51:1576-1586.
  11. Abramovich N.A., Nesterovich N.D. Superellipse in eco-system APPLE. Proceedings of the 54th International Scientific and Technical Conference of Professors and Students (vol. 2). Vitebsk; 2021. p. 102-104. Available from: http://rep.vstu.by/handle/123456789/14813 (accessed: 22.05.2022).
  12. Krivoshapko S.N. Tangential developable and hydrodynamic surfaces for early stage of ship shape design. Ships and Offshore Structures. 2022:1-9. https://doi.org/10.1080/17445302.2022.2062165
  13. Huang W., Li Y., Niklas K.J., Gielis J., Ding Y., Cao L., Shi P. A superellipse with deformation and its application in describing the cross-sectional shapes of a square bamboo. Symmetry. 2020;12(12):2073. https://doi.org/10.3390/sym12122073
  14. Krivoshapko S.N., Ivanov V.N. Algebraic surfaces for rational ship hulls. Tehnologiya Mashinostroeniya. 2022;(3):17-24. (In Russ.)
  15. Mamieva I.A. Ruled algebraic surfaces with a main frame from three superellipses. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(4):387-395. (In Russ.) https://doi.org/10.22363/1815-5235-2022-18-4-387-395
  16. Aleshina O.O. Geometry and static analysis of thin shells in the form of a diagonal transfer surface of the velaroidal type. Structural Mechanics of Engineering Constructions and Buildings. 2023;19(1):84-93. (In Russ.) https://doi.org/10.22363/1815-5235-2023-19-1-84-93
  17. Mamieva I.A., Karnevich V.V. Geometry and static analysis of thin shells with ruled median surfaces with a main frame of three superellipse. Building and Reconstruction. 2023;(1):16-27. (In Russ.) https://doi.org/10.33979/2073-7416-2023-105-1-16-27, EDN LSIOLJ
  18. Mamieva I.A., Razin A.D. Prominent space erections in the form of conic surfaces. Industrial and Civil Engineering. 2017;(10):5-11. (In Russ.)
  19. Gil-oulbe M., Qbaily J. Geometric modeling and linear static analysis of thin shells in the form of cylindroids. Structural Mechanics of Engineering Constructions and Buildings. 2018;14(6):502-508. http://doi.org/10.22363/1815-5235-2018-14-6-502-508
  20. Karnevich V.V. Generating hydrodynamic surfaces by families of Lame curves for modelling submarine hulls. RUDN Journal of Engineering Research. 2022;23(1):30-37. (In Russ.) http://doi.org/10.22363/2312-8143-2022-23-1-30-37
  21. Gil-oulbe M. Reserve of analytical surfaces for architecture and construction. Building and Reconstruction. 2021;(6):63-72. http://doi.org/10.33979/2073-7416-2021-98-6-63-72
  22. Krivoshapko S.N., Bock Hyeng C.A., Gil-oulbe M. Stages and architectural styles in design and building of shells and shell structures. Building and Reconstruction. 2022;(4):112-131. http://doi.org/10.33979/2073-7416-2022-102-4-112-131

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».