Surfaces with a main framework of three given curves which include one circle
- Authors: Krivoshapko S.N.1
-
Affiliations:
- RUDN University
- Issue: Vol 19, No 2 (2023)
- Pages: 210-219
- Section: Geometrical investigations of middle surfaces of shells
- URL: https://journals.rcsi.science/1815-5235/article/view/325846
- DOI: https://doi.org/10.22363/1815-5235-2023-19-2-210-219
- EDN: https://elibrary.ru/CWWLDM
- ID: 325846
Cite item
Full Text
Abstract
Superellipses are becoming more and more in demand in various branches of science and national economy due to their versatility. They found the most application in shipbuilding. Suggestions for the use of superellips in architecture and construction have appeared recently. The author proposes explicit and parametric equations of surfaces with a main framework of three predetermined superellips lying in three coordinate planes. These equations describe a large set of analytical shapes suitable for the formation middle surfaces of thin building shells. One of the superellipses is taken in a form of a circle. The shells can be designed on circular and rhombic plans, and also on plans in the shape of superellips of general type with convex and concave sides. All recommended surfaces are illustrated in 24 examples using computer graphics. A network of curvilinear non-orthogonal coordinates is generated on the surfaces using dimensionless independent parameters. The considered surfaces can become a part of the reserve of surfaces for further application in real structures and facilities.
Keywords
About the authors
Sergey N. Krivoshapko
RUDN University
Author for correspondence.
Email: sn_krivoshapko@mail.ru
ORCID iD: 0000-0002-9385-3699
DSc, Professor of the Department of Civil Engineering, Academy of Engineering
Moscow, Russian FederationReferences
- Ko K.H. A survey: application of geometric modeling techniques to ship modeling and design. International Journal of Naval Architecture and Ocean Engineering. 2010;2(4):177-184. http://doi.org/10.2478/IJNAOE-2013-0034
- Avdonev E.Ya. Mathematical model of hull surface. Prikladnaya Geometriya i Inzhenernaya Grafika (issue 28). Kiev; 1979. p. 46-49. (In Russ.)
- Karnevich V.V. Hydrodynamic surfaces with midship section in the form of the Lame curves. RUDN Journal of Engineering Research. 2021;22(4):323-328. https://doi.org/10.22363/2312-8143-2021-22-4-323-328
- Ma Y.Q., Wang C.M., Ang K.K. Buckling of superellipsoidal shells under uniform pressure. Thin-Walled Structures. 2008;46(6):584-591. http://doi.org/10.1016/j.fws.2008.01.013
- Moonesun M., Mahdion A., Korol Yu.M., Dadkhah M., Javadi M.M. Concepts in submarine shape design. Indian Journal of Geo-Marine Sciences. 2016;45(1):100-104.
- Krivoshapko S.N. Algebraic ship hull surfaces with a main frame from three plane curves in coordinate planes. RUDN Journal of Engineering Research. 2022;23(3):207-212. (In Russ.) http://doi.org/10.22363/2312-8143-2022-23-3-207-212
- Krivoshapko S.N., Aleshina O.O., Ivanov V.N. Static analysis of shells with middle surfaces containing the main frame from three given superellipses. Structural Mechanics and Analysis of Constructions. 2022;(6):18-27. (In Russ.) http://doi.org/10.37538/0039-2383.2022.6.18.27
- Strashnov S.V. Computer simulation of new forms of shell structures. Geometry & Graphics. 2022;(4):26-34. (In Russ.) https://doi.org/10.12737/2308-4898-2022-10-4-26-34
- Erbaş K.C. Surface area of superellipsoids and its application to physics problems. New Applications in Basic Sciences. Iksad Publishing House; 2022. p. 39-63.
- Elishakoff I., Elettro F. Interval, ellipsoidal, and super-ellipsoidal calculi for experimental and theoretical treatment of uncertainty: which one ought to be preferred? International Journal of Solids and Structures. 2014;51:1576-1586.
- Abramovich N.A., Nesterovich N.D. Superellipse in eco-system APPLE. Proceedings of the 54th International Scientific and Technical Conference of Professors and Students (vol. 2). Vitebsk; 2021. p. 102-104. Available from: http://rep.vstu.by/handle/123456789/14813 (accessed: 22.05.2022).
- Krivoshapko S.N. Tangential developable and hydrodynamic surfaces for early stage of ship shape design. Ships and Offshore Structures. 2022:1-9. https://doi.org/10.1080/17445302.2022.2062165
- Huang W., Li Y., Niklas K.J., Gielis J., Ding Y., Cao L., Shi P. A superellipse with deformation and its application in describing the cross-sectional shapes of a square bamboo. Symmetry. 2020;12(12):2073. https://doi.org/10.3390/sym12122073
- Krivoshapko S.N., Ivanov V.N. Algebraic surfaces for rational ship hulls. Tehnologiya Mashinostroeniya. 2022;(3):17-24. (In Russ.)
- Mamieva I.A. Ruled algebraic surfaces with a main frame from three superellipses. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(4):387-395. (In Russ.) https://doi.org/10.22363/1815-5235-2022-18-4-387-395
- Aleshina O.O. Geometry and static analysis of thin shells in the form of a diagonal transfer surface of the velaroidal type. Structural Mechanics of Engineering Constructions and Buildings. 2023;19(1):84-93. (In Russ.) https://doi.org/10.22363/1815-5235-2023-19-1-84-93
- Mamieva I.A., Karnevich V.V. Geometry and static analysis of thin shells with ruled median surfaces with a main frame of three superellipse. Building and Reconstruction. 2023;(1):16-27. (In Russ.) https://doi.org/10.33979/2073-7416-2023-105-1-16-27, EDN LSIOLJ
- Mamieva I.A., Razin A.D. Prominent space erections in the form of conic surfaces. Industrial and Civil Engineering. 2017;(10):5-11. (In Russ.)
- Gil-oulbe M., Qbaily J. Geometric modeling and linear static analysis of thin shells in the form of cylindroids. Structural Mechanics of Engineering Constructions and Buildings. 2018;14(6):502-508. http://doi.org/10.22363/1815-5235-2018-14-6-502-508
- Karnevich V.V. Generating hydrodynamic surfaces by families of Lame curves for modelling submarine hulls. RUDN Journal of Engineering Research. 2022;23(1):30-37. (In Russ.) http://doi.org/10.22363/2312-8143-2022-23-1-30-37
- Gil-oulbe M. Reserve of analytical surfaces for architecture and construction. Building and Reconstruction. 2021;(6):63-72. http://doi.org/10.33979/2073-7416-2021-98-6-63-72
- Krivoshapko S.N., Bock Hyeng C.A., Gil-oulbe M. Stages and architectural styles in design and building of shells and shell structures. Building and Reconstruction. 2022;(4):112-131. http://doi.org/10.33979/2073-7416-2022-102-4-112-131
Supplementary files
