Stability of shallow shells with local changes in strength characteristics

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The authors deal with the structures of buildings in the form of shallow shells with some damage. The derivation of equations is given taking into account the geometric nonlinearity of the work of a thin-walled structure. A technique for solving systems of equations using the Bubnov - Galyorkin method is given. The work of the structure with various ways of fixing the edges is simulated. Damage is specified by changing the modulus of elasticity in an arbitrary section of the structure. The influence of the shape and location of the defect on the value of the critical load is investigated. The results of the studies carried out are given in a dimensionless form and illustrated by graphs, which makes it convenient to use them in engineering calculations. Recommendations are given for correcting the shape and thickness of coating structures in the form of shallow shells in order to maintain their bearing capacity in the event of defects. The proposed method can be used to determine and investigate the stress-strain state of structures in the form of shallow shells, taking into account the geometric nonlinearity of work in the presence of defects in them. The constructed graphs of the dependence of the critical load on various parameters make it possible to evaluate the operation of structures, taking into account changes in various factors at various stages of the structure's operation. The use of varying characteristics of the reduction in the modulus of elasticity, which appears because of the occurrence of a defect, shows results that are close to real conditions.

Авторлар туралы

Alexander Kolesnikov

South-West State University

Хат алмасуға жауапты Автор.
Email: ag-kolesnikov@mail.ru
ORCID iD: 0000-0001-7874-3646

Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Unique Buildings and Structures

94 50 Let Oktyabrya St, Kursk, 305040, Russian Federation

Antonina Osadchaya

South-West State University

Email: tonechka.84@mail.ru
ORCID iD: 0000-0002-0076-3695

master student, Department of Unique Buildings and Structures

94 50 Let Oktyabrya St, Kursk, 305040, Russian Federation

Әдебиет тізімі

  1. Nie G., Chan C., Yao J., He X. Asymptotic solution for nonlinear buckling of orthotropic shells on elastic foundation. AIAA Journal. 2009;47(7):1772-1783. https://doi.org/10.2514/1.43311
  2. Ivanov V.N., Krivoshapko S.N. Analytical methods for calculating shells of non-canonical form. Moscow: RUDN University Publ.; 2010. (In Russ.)
  3. Sofiyev A.H., Omurtag M.H., Schnack E. The vibration and stability of orthotropic conical shells with non-homogeneous material properties under a hydrostatic pressure. Journal of Sound and Vibration. 2009;319(3-5):963-983.
  4. Bahrami S., Mohammad F.Sh., Saadatpour M. Vibration analysis of thin shallow shells using spectral element method. Applied Mathematical Modelling. 2017;44:470-480. https://doi.org/10.1016/j.apm.2017.02.001
  5. Eisenberger M., Godoy L.A. Navier type exact analytical solutions for vibrations of thin-walled shallow shells with rectangular planform. Thin-Walled Structures. 2020;160:107356. https://doi.org/10.1016/j.tws.2020.107356
  6. Pavlysh V.N., Storozhev S.V., Nombre S.B. Study of fuzzy models of stability and resonant vibrations, closed spherical and ellipsoidal shells. Journal of Theoretical and Applied Mechanics. 2020;(3):32-42. (In Russ.)
  7. Eisenberger M., Deutsch A. Solution of thin rectangular plate vibrations for all combinations of boundary conditions. Journal of Sound and Vibration. 2019;452:1-12. https://doi.org/10.1016/j.jsv.2019.03.024
  8. Sofiyev A.H., Turan F. On the nonlinear vibration of heterogenous orthotropic shallow shells in the framework of the shear deformation shell theory. Thin-Walled Structures. 2021;161:107181. https://doi.org/10.1016/j.tws.2020.107181
  9. Krivoshapko S.N., Gil-Oulbe M. Geometry & strength of a shell of velaroidal type on annulus plan with two families of sinusoids. International Journal of Soft Computing and Engineering. 2013;3(3):71-73
  10. Aleshina O.O., Ivanov V.N., Cajamarca-Zuniga D. Stress state analysis of an equal slope shell under uniformly distributed tangential load by different methods. Structural Mechanics of Engineering Constructions and Buildings. 2021;17(1):51-62. https://doi.org/10.22363/1815-5235-2021-17-1-51-62
  11. Ivanov V.N., Abbushi N.Y.A. Calculation of the compartments of the epitrochoidal shell by the variation-difference method. RUDN Journal of Engineering Research. 2003;(2):13-18. (In Russ.)
  12. Quan T.Q., Cuong N.H., Duc N.D. Nonlinear buckling and post-buckling of eccentrically oblique stiffened sandwich functionally graded double curved shallow shells. Aerospace Science and Technology. 2019;90:169-180. https://doi.org/10.1016/j.ast.2019.04.037
  13. Huang S., Qiao P. A new semi-analytical method for nonlinear stability analysis of stiffened laminated composite doubly-curved shallow shells. Composite Structures. 2020;251:112526. https://doi.org/10.1016/j.compstruct.2020.112526
  14. Trushin S., Zhavoronok S. Nonlinear analysis of multilayered composite shells using finite difference energy method. Space Structures 5: Proceedings of the Fifth International Conference on Space Structures, held at the University of Surrey. Guildford: Thomas Telford Ltd; 2002. p. 1527-1533.
  15. Qin Zh., Shengnan Zh., Xuejia P., Safaei B., Chua F. A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions. International Journal of Mechanical Sciences. 2019;170:105341. https://doi.org/10.1016/j.ijmecsci.2019.105341
  16. Wang J., Li Zh.L., Yu W. Structural similitude for the geometric nonlinear buckling of stiffened orthotropic shallow spherical shells by energy approach. Thin-Walled Structures. 201;138:430-457. https://doi.org/10.1016/j.tws.2018.02.006
  17. Bondarenko V.M., Kolchunov V.I., Klyueva N.V. Once again about the constructive safety and survivability of buildings. Bulletin of the Department of Building Sciences of the Russian Academy of Architecture and Construction Sciences. 2007;(11):81-86. (In Russ.)
  18. Geniev G.A., Pyatikrestovsky K.P. Issues of longterm dynamic strength of anisotropic structural materials. Moscow: GUP TsNIISK imeni V.A. Kucherenko Publ.; 2000. (In Russ.)
  19. Andreev V., Barmenkova E., Potekhin I. Way of optimization of stress state of elements of concrete structures. Procedia Engineering. 2016;153-169:37-44. https://doi.org/10.1016/j.proeng.2016.08.077
  20. Gil-Oulbé M., Farhan I.T. Using FGM for cyclic shell structures. Structural Mechanics of Engineering Constructions and Buildings. 2016;(4):14-20.
  21. Stupishin L.Y., Kolesnikov A.G., Nikitin K.E. Variable form forming investigation for flexible shallow shells on circular base. Asian Journal of Civil Engineering. 2017;18(2):163-171.
  22. Straughan W. Analysis of plates on elastic foundations. Texas: Texas Tech University; 1980.
  23. Stupishin L., Kolesnikov A., Tolmacheva T. Analysis of flexible layered shallow shells on elastic foundation. IOP Conference Series: Materials Science and Engineering. 2017;201(1):012018. https://doi.org/10.1088/1757-899X/201/1/012018
  24. Stupishin L.Y., Kolesnikov A.G., Nikitin K.E. Optimal design of flexible shallow shells on elastic foundation. Journal of Applied Engineering Science. 2017;15(3):349-353. https://doi.org/10.5937/jaes15-14654
  25. Serpik I.N., Tarasova N.V. Optimisation of steel trusses with a choice of multi-stage prestressing conditions. Magazine of Civil Engineering. 2020;5(97):9705. https://doi.org/10.18720/MCE.97.5

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».