Structural analysis of high-rise building using ETABS and RSA software

Cover Page

Cite item

Full Text

Abstract

There are numerous software applications available to analyze and design massive projects in short time. Most of the software have 2-dimensional and 3-dimen- sional tools, while various structural engineers employ the use of the 3D analysis and design tools in their day-to-day tasks because of its ease to operate and graphical user interface. These tools help in modeling, analyzing, and design of structures much more efficient. Despite the availability of numerous software products, there are confusions on the software to be used in the analysis and design of specific building structures. There is a need of studying the strength and weakness of some of these software tools to help structural engineers in the selection of the best application in their daily tasks. The aim of this study is to investigate the structural analysis of high-rise building with ETABS and RSA software and compare the influences of the structural analysis results from the two software in design. The comparison between the axial forces and moment from the results of ETABS and RSA software are presented. Case studies are considered to analyze the structure with the gravitational loads and lateral loads due to wind load by the two software applications. The case studies include a thirty-stories reinforced concrete building frame. The results of the analysis of the frame are compared and their difference is presented. From the analysis, the results show that, the moments and forces presented from RSA are bigger than that of ETABS.

About the authors

Sophia A. Pechorskaya

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: shifu558@gmail.com
ORCID iD: 0000-0001-5933-5161

teacher of the Department of Civil Engineering, Academy of Engineering, Ph.D.

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Vera V. Galishnikova

Moscow State University of Civil Engineering (National Research University)

Email: shifu558@gmail.com
ORCID iD: 0000-0003-2493-7255

Director of the International Department, Doctor of Technical Sciences, Professor

26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation

Shishai B. Gebreslassie

Peoples’ Friendship University of Russia (RUDN University)

Email: shifu558@gmail.com
ORCID iD: 0000-0001-5683-829X

master student of the Department of Civil Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Habte Y. Damir

Peoples’ Friendship University of Russia (RUDN University)

Email: shifu558@gmail.com
ORCID iD: 0000-0002-7275-6750

PhD student of the Department of Civil Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

References

  1. Shuvalova E. High-rise construction in Russia: Asian way vs. Middle-Eastern way. CTBUH 2015 New York Conference. 2015:168-175.
  2. Walsh P., Saleh A., Far H. Evaluation of structural systems in slender high-rise buildings. Aust. J. Struct. Eng. 2018;19(2):105-117. http://dx.doi.org/10.1080/13287982.2018.1449597
  3. Lande P.S., Takale P. Analysis of high rise building with transfer floor. Int. Res. J. Eng. Technol. 2018;5:2483-2488.
  4. Saleem H., Shrivastava L.P. A Comparative Study on high rise building for various geometrical shapes subjected to wind load of RCC & composite structure using ETABS. IRJET. 2019:6(12):1553-1558.
  5. Kawade M.P., Bangde V.S., Sawai G.H. Seismic analysis of tall building with central core as tube structure. IJAEM. 2020;2(6):300-310. http://dx.doi.org/10.35629/5252-0206300310
  6. Lokesh Nishanth C.H., Sai Swaroop Y., Jagarapu D.C.K., Jogi P.K. Analysis and design of commercial building with different slab arrangements using ETABS. Mater. Today Proc. 2020;33:700-704. http://dx.doi.org/10.1016/j.matpr.2020.05.823
  7. Lu Z., He X., Zhou V. Performance-based seismic analysis on a super high-rise building with improved viscously damped outrigger system. Struct. Control Heal. Monit. 2018;25(8):1-21. http://dx.doi.org/10.1002/stc.2190
  8. Akhil Ahamad S., Pratap K.V. Dynamic analysis of G + 20 multi storied building by using shear walls in various locations for different seismic zones by using ETABS. Mater. Today Proc. 2021;43(2):1043-1048, http://dx.doi.org/10.1016/j.matpr.2020.08.014
  9. Secer M., Zamani A., Isler Y. A practical compensation method for differential column shortenings in high-rise reinforced concrete buildings. Period. Polytech. Civ. Eng. 2020;65(1):242-254. http://dx.doi.org/10.3311/PPci.16028
  10. Najam F.A., Warnitchai P. A modified response spectrum analysis procedure to determine nonlinear seismic demands of high-rise buildings with shear walls. Struct. Des. Tall Spec. Build. 2018;27(1):1-19. http://dx.doi.org/10.1002/tal.1409
  11. Karrar W.S., Shyama A.M., Jassim M. High-rise building wind analysis using computational fluid dynamics and dynamic analysis using etabs program. Int. J. Emerg. Trends Eng. Res. 2020;8(7):3994-4012. http://dx.doi.org/10.30534/ijeter/2020/172872020
  12. Ren X., Fan W., Li J., Chen J. Building information model-based finite element analysis of high-rise building community subjected to extreme earthquakes. Adv. Struct. Eng. 2019;22(4):971-981. http://dx.doi.org/10.1177/1369433218780484
  13. Chandrasekhar Reddy K., Lalith Kumar G. Seismic analysis of high-rise buildings (G+30) by using ETABS. Int. J. Tech. Innov. Mod. Eng. Sci. 2019;5(3):174-181.
  14. Kumar A., Kushwaha N. A review paper on progressive collapse assessment of asymmetric high rise building and its modelling using ETABS software. Int. J. Res. Appl. Sci. Eng. Technol. 2020;8(IX):68-73. http://dx.doi.org/10.22214/ijraset.2020.31310
  15. Zheng X.W., Li H.N., Bin Yang H.N., Li G., Huo L.S., Liu Y. Damage risk assessment of a high-rise building against multihazard of earthquake and strong wind with recorded data. Eng. Struct. 2019;200:109697. http://dx.doi.org/10.1016/j.engstruct.2019.109697
  16. Tan S., Moinuddin K. Systematic review of human and organizational risks for probabilistic risk analysis in high-rise buildings. Reliab. Eng. Syst. Saf. 2019;188:233-250. http://dx.doi.org/10.1016/j.ress.2019.03.012
  17. Odeyemi S.O., Akinpelu M.A., Abdulwahab R., Ibitoye B.A., Amoo A.I. Evaluation of selected software packages for structural engineering works. ABUAD J. Eng. Res. Dev. 202;3(2):133-141.
  18. ETABS 2016: software verification examples. Computer and Structure, Inc., 2017.
  19. Marsh K. Autodesk robot structural analysis professional 2015: essentials. Marsh API LLC; 2014.
  20. Hadi A.S., Abd A.M., Mohammed Mahmood. Integrity of Revit with structural analysis softwares. IOP Conf. Series: Materials Science and Engineering. 2012;1076:012119. http://dx.doi.org/10.1088/1757-899X/1076/1/012119
  21. Kamble T.R., Awchat G.D. Seismic analysis and design of multi-storied RC building using STAAD Pro and ETABS. 2018;3(8)4-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».