Modern interpretation of Saint-Venant’s principle and semi-inverse method

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Relevance. The progressive development of views on the Saint-Venant formulated principles and methods underlying the deformable body mechanics, the growth of the mathematical analysis branch, which is used for calculation and accumulation of rules of thumb obtained by the mathematical results interpretation, lead to the fact that the existing principles are being replaced with new, more general ones, their number is decreasing, and this field is brought into an increasingly closer relationship with other branches of science and technology. Most differential equations of mechanics have solutions where there are gaps, quick transitions, inhomogeneities or other irregularities arising out of an approximate description. On the other hand, it is necessary to construct equation solutions with preservation of the order of the differential equation in conjunction with satisfying all the boundary conditions. Thus, the following aims of the work were determined: 1) to complete the familiar Saint-Venant’s principle for the case of displacements specified on a small area; 2) to generalize the semi-inverse Saint-Venant’s method by finding the complement to the classical local rapidly decaying solutions; 3) to construct on the basis of the semi-inverse method a modernized method, which completes the solutions obtained by the classical semi-inverse method by rapidly varying decaying solutions, and to rationalize asymptotic convergence of the solutions and clarify the classical theory for a better understanding of the classic theory itself. To achieve these goals, we used such methods , as: 1) strict mathematical separation of decaying and non-decaying components of the solution out of the plane elasticity equations by the methods of complex variable theory function; 2) construction of the asymptotic solution without any hypotheses and satisfaction of all boundary conditions; 3) evaluation of convergence. Results. A generalized formulation of the Saint-Venant’s principle is proposed for the displacements specified on a small area of a body. A method of constructing asymptotic analytical solutions of the elasticity theory equations is found, which allows to satisfy all boundary conditions.

Авторлар туралы

Evgeny Zveryaev

Keldysh Institute of Applied Mathematics; Moscow Aviation Institute (National Research University)

Хат алмасуға жауапты Автор.
Email: zveriaev@mail.ru

Doctor of Technical Sciences, Professor, senior researcher of Keldysh Institute of Applied Mathematics, Professor of Moscow Aviation Institute (National Research University)

4 Miusskaya Sq, Moscow, 125047, Russian Federation; 4 Volokolamskoe Highway, Moscow, 125993, Russian Federation

Әдебиет тізімі

  1. Saint-Venant A.J.C.B. Memoire sur la Torsion des Prismes. Mem. Divers Savants. 1855;14:233-560.
  2. Mises R. On Saint-Venant's Principle. Bull. AMS. 1945;51:555-562.
  3. Friedrichs K.O., Dressler R.F. A boundary layer theory for elastic bending of plates. Comm. Pure Appl. Math. 1961;14:1-33. https://doi.org/10.1002/cpa.3160140102
  4. Goldenveiser A.L., Kolos A.V. K postroeniyu dvumernykh uravnenii teorii uprugikh tonkikh plastinok [On the derivation of two-dimensional equations in the theory of thin elastic plates]. Journal of Applied Mathematics and Mechanics. 1965;29(1):141-155.
  5. Gregory R.D., Wan F.Y.M. Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. J. Elasticity. 1984;14:27-64. https://doi.org/10.1007/BF00041081
  6. Horgan C.O., Knowles J.K. Recent developments concerning Saint-Venant's principle. Advances in Applied Mechanics. 1983;23:179-269. doi: 10.1016/S0065-2156(08)70244-8.
  7. Horgan C.O. Recent developments concerning Saint-Venant's principle: an update. Applied Mech. Reviews. 1989;42:295-303.
  8. Horgan C.O. Recent developments concerning Saint-Venant's principle: a second update. Applied Mech. Reviews. 1996;49:101-111.
  9. Horgan C.O., Simmonds J.G. Saint-Venant end effects in composite structures. Composites Engineering. 1994;4(3):279-286. https://doi.org/10.1016/0961-9526(94)90078-7
  10. De Pascalis R., Destrade M., Saccomandi G. The stress field in a pulled cork and some subtle points in the semi-inverse method of nonlinear elasticity. Proc. R. Soc. Ser. A. Math., Phys., Engng. Sci., 2007; 463: 2945-2959. URL: https://doi.org/10.1098/rspa.2007.0010
  11. De Pascalis R., Rajagopal K.R., Saccomandi G. Remarks on the use and misuse of the semi-inverse method in the nonlinear theory of elasticity. Quart. J. Mech. Appl. Math. 2009;62(4):451-464. https://doi.org/10.1093/qjmam/hbp019
  12. Bulgariu E. On the Saint-Venant’s problem in microstretch elasticity. Libertas Mathematica. 2011;31:147-162.
  13. Chiriеta S. Saint-Venant’s problem and semi-inverse solutions in linear viscoelasticity. Acta Mechanica. 1992;94:221-232. https://doi.org/10.1007/BF01176651
  14. Placidi L. Semi-inverse method а la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math. Mech. Solids. 2015;22(5):919-937. https://doi.org/10.1177/1081286515616043
  15. Zveryaev E.M. Interpretation of Semi-Invers Saint-Venant Method as Iteration Asymptotic Method. In: Pietraszkiewicz W., Szymczak C. (eds.) Shell Structures: Theory and Application. London: Taylor & Francis Group; 2006. p. 191-198.
  16. Zveryayev Ye.M. Analysis of the hypotheses used when constructing the theory of beam and plates. Journal of Applied Mathematics and Mechanics. 2003;67(3):425-434.
  17. Zveryayev Ye.M., Makarov G.I. A general method for constructing Timoshenko-type theories. Journal of Applied Mathematics and Mechanics. 2008;72(2):197-207. Available from: https://www.elibrary.ru/item.asp?id=10332626 (accessed: 10.07.2020).
  18. Zveryayev E.M., Olekhova L.V. Reduction 3D equations of composite plate to 2D equations on base of mapping contraction principle. KIAM Preprint No. 95. Moscow; 2014. (In Russ.) Available from: http://library. keldysh.ru/preprint.asp?id=2014-95 (accessed: 10.07.2020).
  19. Zveryaev E.M. Saint-Venant - Picard - Banach Method for Integrating Thin-Walled System Equations of the Theory of Elasticity. Mechanics of Solids. 2020;55(7):124-132. (In Russ.) doi: 10.1134/S0032823519050126.
  20. Granas A. Fixed point theory. New York: Springer-Verlag; 2003.
  21. Greenberg G.A. O metode, predlozhennom P.F. Papkovichem dlya resheniya ploskoi zadachi teorii uprugosti dlya pryamougol'noi oblasti i zadachi izgiba pryamougol'noi tonkoi plity s dvumya zakreplennymi kromkami, i o nekotorykh ego obobshcheniyakh [On the method proposed P.F. Papkovich for solutions theory of elasticity plan problem for the rectangular area, and the bending problem for rectangular thin plate with two fixed edges, and some of its generalizations]. Journal of Applied Mathematics and Mechanic. 1953;17(2):211-228. (In Russ.)

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».