Algorithm for calculating the problem of unilateral frictional contact with an increscent external load parameter

Capa

Citar

Texto integral

Resumo

The subject of the study is the contact interaction of deformable elements of linear complementarity problem (LCP). To solve the linear complementarity problem, the Lemke method with the introduction of an increasing parameter of external loading is used. The proposed approach solves the degenerated matrix in a finite number of steps, while the dimensionality of the problem is limited to the area of contact. To solve the problem, the initial table of the Lemke method is generated using the contact matrix of stiffness and the contact load vector. The unknowns in the problem are mutual displacements and interaction forces of contacting pairs of points of deformable solids. The proposed approach makes it possible to evaluate the change in working schemes as the parameter of external load increases. The features of the proposed formulation of the problem are shown, the criteria for stopping the stepwise process of solving such problems are considered. Model examples for the proposed algorithm are given. The algorithm has shown its efficiency in application, including for complex model problems. Recommendations on the use of the proposed approach are given.

Sobre autores

Alexander Popov

Pacific National University

Autor responsável pela correspondência
Email: SanyaPov@mail.ru
ORCID ID: 0000-0001-6762-5476

Lecturer-researcher at the Higher school of Industrial and Civil Engineering

Khabarovsk, Russian Federation

Alexander Lovtsov

Pacific National University

Email: lad@pnu.edu.ru
ORCID ID: 0000-0001-5050-466X

Dr. of Engineering, Professor at the Higher school of Industrial and Civil Engineering

Khabarovsk, Russian Federation

Bibliografia

  1. Migórski S. Optimal Control of History-Dependent Evolution Inclusions with Applications to Frictional Contact. Journal of Optimization Theory and Applications. 2020;185:574-596. https://doi.org/10.1007/s10957-020-01659-0
  2. Kikuchi N., Oden J.T. Contact Problems in Elasticity. Philadelphia: Society for Industrial and Applied Mathematics. 1988. https://doi.org/10.1137/1.9781611970845
  3. Duvaut G., Lions J.-L. Inequalities in Mechanics and Physics. Berlin, Heidelberg: Springer Berlin Heidelberg; 1976. https://doi.org/10.1007/978-3-642-66165-5
  4. Glowinski R., Lions J.-L., Trémolières R. Numerical Analysis of Variational Inequalities. Elsevier Science; 1981. https://doi.org/10.1016/S0168-2024(08)70201-7
  5. Kravchuk A.S. The variational method in contact problems. The present state of the problem and trends in its development. Journal of Applied Mathematics and Mechanics. 2009;73(3):351-357. https://doi.org/10.1016/j.jappmathmech. 2009.07.004
  6. Bathe K.J., Chaudhary A.A. A solution method for planar and axisymmetric contact problems. International Journal for Numerical Methods in Engineering. 1985;21:65-88. https://doi.org/10.1002/nme.1620210107
  7. Klarbring A. A mathematical programming approach to three-dimensional contact problems with friction. Computer Methods in Applied Mechanics and Engineering. 1986;58:175-200. https://doi.org/10.1016/0045-7825(86)90095-2
  8. Klarbring A. On discrete and discretized non-linear elastic structures in unilateral contact (stability, uniqueness and variational principles). International Journal of Solids and Structures. 1988;24(5):459-479. https://doi.org/10.1016/00207683(88)90002-9
  9. Hlaváček J., Haslinger J., Necas J., Lovishek J. Solution of Variational Inequalities in Mechanics. New York: Springer; 1986. https://doi.org/10.1007/978-1-4612-1048-1
  10. Cottle R.W., Giannessi F., Lions J.L. Variational Inequalities and Complementary Problems in Mathematical Physics and Economics. New York: John Wiley; 1979.
  11. Eck C., Jarusek J., Krbec M. Unilateral Contact Problems. New York: CRC Press; 2005. https://doi.org/10.1201/ 9781420027365
  12. Reclitis G., Raivindran A., Regsdel K. Optimization in the technique. In 2 books, Part. 2. Moscow: Mir Publ.; 1986. Available from: http://padabum.com/d.php?id=39920 (Accessed 12.03.2023)
  13. Panagiotopoulos P.D. Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhäuser: Boston-Base-Stuttgart; 1985. https://doi.org/10.1007/978-1-4612-5152-1
  14. Kravchuk A.S., Neittaanmäki P.J. Variational and Quasi-Variational Inequalities in Mechanics. Dordrecht: Springer Netherlands. 2007. Vol. 147. https://doi.org/10.1007/978-1-4020-6377-0
  15. Mitra G., Cottle R.W., Giannessi F., Lions J.L. Variational Inequalities and Complementarity Problems - Theory and Application. The Journal of the Operational Research Society. 1981;32(9):848. https://doi.org/10.2307/2581414
  16. Acary V., Brémond M., Huber O. On solving contact problems with coulomb friction: Formulations and numerical comparisons. Advanced Topics in Nonsmooth Dynamics: Transactions of the European Network for Nonsmooth Dynamics. 2018:375-457. https://doi.org/10.1007/978-3-319-75972-2_10
  17. Noor M.A., Noor K.I., Rassias M.T. New Trends in General Variational Inequalities. Acta Appl Math. 2020; 170(1):981-1064. https://doi.org/10.1007/S10440-020-00366-2/TABLES/3
  18. Vorovich I.I., Aleksandrov V.M. Contact Mechanics Interaction. Moscow: Fizmatlit Publ.; 2001. (In Russ.) Available From: https://www.rfbr.ru/rffi/ru/books/o_460?FILTER_ID=23@2. (accessed 12.03.2023).
  19. Raous M. Art of Modeling in Contact Mechanics. In: The Art of Modeling Mechanical Systems. Springer. 2016;570:203-276. https://doi.org/10.1007/978-3-319-40256-7_4
  20. Sofonea M., Matei A. Mathematical Models in Contact Mechanics. Cambridge: Cambridge University Press; 2012. https://doi.org/10.1017/CBO9781139104166
  21. Souleiman Y., Barboteu M. Numerical Analysis of a Sliding Frictional Contact Problem with Normal Compliance and Unilateral Contact. Open Journal of Modelling and Simulation. 2021;9:391-406. https://doi.org/10.4236/ojmsi.2021.94025
  22. Sofonea M., bin Xiao Y. Well-Posedness of Minimization Problems in Contact. Journal of Optimization Theory and Applications. 2021;188(3):650-672. https://doi.org/10.1007/s10957-020-01801-y
  23. Sofonea M., bin Xiao Y. Weak formulations of quasistatic frictional contact problems. Commun Nonlinear Sci Numer Simul. 2021;101:105888. https://doi.org/10.1016/J.CNSNS.2021.105888
  24. Sofonea M., Shillor M. Tykhonov Well-Posedness and Convergence Results for Contact Problems with UnilateralConstraints. Technologies. 2021;9(1):1. https://doi.org/10.3390/TECHNOLOGIES9010001
  25. Leturcq B., Tallec P. le, Pascal S., Fandeur O., Pacull J. NTFA inspired model order reduction including contactand friction. HAL open science. 2021. Available from: https://hal.archives-ouvertes.fr/hal-03202024 (accessed: 12.03.2023).
  26. Antolin P., Buffa A., Fabre M., Fabre M.A. A priori error for unilateral contact problems with Lagrange multipliersand IsoGeometric Analysis. HAL open science. 2018. Available from: https://hal.archives-ouvertes.fr/hal-01710816 (accessed: 12.03.2023).
  27. Parisch H. A consistent tangent stiffness matrix for three-dimensional non-linear contact analysis. Int Journal Numerical Methods in Engineering. 1989;28(8):1803-1812. https://doi.org/10.1002/nme.1620280807
  28. Sofonea M., Souleiman Y. Analysis of a sliding frictional contact problem with unilateral constraint. Mathematics and Mechanics of Solids. 2017;22(3):324-342. https://doi.org/10.1177/1081286515591304
  29. Lu L., Li L., Sofonea M. A generalized penalty method for differential variational-hemivariational inequalities. Acta Mathematica Scientia. 2022;42(1):247-264. https://doi.org/10.1007/S10473-022-0114-Z
  30. Arghir M., Benchekroun O. A simplified structural model of bump-type foil bearings based on contact mechanics including gaps and friction. Tribol Int. 2019;134:129-144. https://doi.org/10.1016/j.triboint.2019.01.038
  31. Peng L., Feng Z.Q., Joli P., Renaud C., Xu W.Y. Bi-potential and co-rotational formulations applied for real timesimulation involving friction and large deformation. Computational Mechanics. 2019;64(3):611-623. https://doi.org/10.1007/S00466-019-01672-9
  32. Lukashevich A.A. Computational modelling of stiffness and strength properties of the contact seam. Magazine of Civil Engineering. 2018;81(5):149-159. https://doi.org/10.18720/MCE.81.15
  33. Lukashevich A.A., Rozin L.A. On the decision of contact problems of structural mechanics with unilateralconstraints and friction by step-by-step analysis. Magazine of Civil Engineering. 2013;1(36):75-81. https://doi.org/10. 5862/MCE.36.9
  34. Gholami F., Nasri M., Kövecses J., Teichmann M. A linear complementarity formulation for contact problems withregularized friction. Mechanism and Machine Theory. 2016;105:568-582. https://doi.org/10.1016/J.MECHMACHTHEORY.2016.07.016
  35. Tasora A., Anitescu M. A fast NCP solver for large rigid-body problems with contacts, friction, and joints. Computational Methods in Applied Sciences. 2009;12:45-55. https://doi.org/10.1007/978-1-4020-8829-2_3
  36. Zheng H., Li X. Mixed linear complementarity formulation of discontinuous deformation analysis. International Journal of Rock Mechanics and Mining Sciences. 2015;75:23-32. https://doi.org/10.1016/j.ijrmms.2015.01.010
  37. Ignatyev A.V., Ignatyev V.A., Onischenko E.V. Analysis of Systems with Unilateral Constraints through the Finite Element Method in the Form of a Classical Mixed Method. Procedia Engineering. 2016;150:1754-1759. https://doi.org/10.1016/j.proeng.2016.07.166
  38. Morozov N.F., Tovstik P.Y. Bending of a two-layer beam with non-rigid contact between the layers. Journal of Applied Mathematics and Mechanics. 2011;75(1):77-84. https://doi.org/10.1016/j.jappmathmech.2011.04.012
  39. Berezhnoi D.V., Sagdatullin M.K. Calculation of interaction of deformable designs taking into account friction inthe contact zone by finite element method. Contemporary Engineering Sciences. 2015;8(23):1091-1098. https://doi.org/10.12988/ces.2015.58237
  40. Kudawoo A.D., Abbas M., De-Soza T., Lebon F., Rosu I. Computational Contact Problems: Investigations on the Robustness of Generalized Newton Method, Fixed-Point method and Partial Newton Method. Int J for Computational Methods in Engineering Science and Mechanics. 2018;19(4):268-282. https://doi.org/10.1080/15502287.2018.1502217
  41. Averin A.N., Puzakow A.Yu. Design of systems with uniateral constraints. Structural mechanics and structures. 2015;1(10):15-32. (In Russ.) Available from: http://nauteh-journal.ru/files/4403ce61-ea9d-4dcf-abbd-ac90a11aec39 (accessed: 12.04.2023).
  42. Fabre M., Pozzolini C., Renard Y. Nitsche-based models for the unilateral contact of plates. ESAIM: Mathematical Modelling and Numerical Analysis. 2021;55:941-967. https://doi.org/10.1051/M2AN/2020063
  43. Brogliato B., Kovecses J., Acary V. The contact problem in Lagrangian systems with redundant frictional bilateral and unilateral constraints and singular mass matrix. The all-sticking contacts problem. Multibody System Dynamics. 2020;48(2):151-192. https://doi.org/10.1007/S11044-019-09712-1
  44. Streliaiev Yu.M. A nonlinear boundary integral equations method for the solving of quasistatic elastic contactproblem with Coulomb friction. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences. 2016;20(2):306-327. (In Russ.) https://doi.org/10.14498/vsgtu1471
  45. Zhiltsov A.V. Modified duality scheme for numerical simulation of the contact between elastic bodies.Mathematical notes of NEFU. 2016;23(4):99-114. (In Russ.) Available from: http://www.mzsvfu.ru/index.php/mz/article/view/modified-duality-scheme-for-numerical-simulation-of-the-contact-between-elastic-bodies (accessed: 12.04.2023).
  46. Landenberger A., El-Zafrany A. Boundary element analysis of elastic contact problems using gap finite elements. Comput Struct. 1999;71(6):651-661. https://doi.org/10.1016/S0045-7949(98)00303-4
  47. Popov A., Lovtsov A. Frictional contact problem in building constructions analysis. Magazine of Civil Engineering. 2020;100(8):1-11. https://doi.org/10.18720/MCE.100.1
  48. Popov A N., Lovtsov A.D. Frictional contact in the linear complementarity problem with gaps account. Structural mechanics and analysis of constructions. 2021;297(4):36-43. https://doi.org/10.37538/0039-2383.2021.4.36.43
  49. Lemke C.E. Bimatrix Equilibrium Points and Mathematical Programming. Manage Sci. 1965;11(7):681-689. https://doi.org/10.1287/mnsc.11.7.681
  50. Lemke C.E. Some pivot schemes for the linear complementarity problem. Complementarity and Fixed Point Problems. 1978;7:15-35. https://doi.org/10.1007/bfb0120779

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».