Thermomechanical Performance of Steel and Recycled Aluminium Plates in Tropical Savanna Climatic Conditions

Cover Page

Cite item

Full Text

Abstract

This research covers and compares the thermomechanical behavior of steel and recycled aluminium plates under concentrated loading and buckling conditions in several thermal conditions simulating the tropical savanna (Aw) climate. The study aims to explore their structural behavior as a function of temperature and evaluate their applicability in heat-sensitive applications. Finite element analysis (FEA) was used to model the buckling and deformation behavior of the two materials at temperatures from 0°C to 44°C and uniaxial loading of up to 100 MPa. The analytical and numerical solutions were compared; their results would differ no more than 5%, thus validating the FEA model. The steel plates generally buckled less (greater critical buckling load) in hotter thermal conditions than the aluminium. The buckling load of steel reduced by approximately 40% in Mode 1 when it went from 33°C to 44°C, while the buckling load of aluminium reduced by just 4.71%. The same trend was observed in Mode 2. These findings validate that recycled aluminium possesses superior thermomechanical stability to tropical thermal fluctuation and can be a good alternative as a material for structures in applications of high thermal fluctuation, which will be beneficial towards maximum utilization of resources in building engineering.

About the authors

Paschal Ch. Chiadighikaobi

Afe Babalola university

Author for correspondence.
Email: chiadighikaobi.paschalc@abuad.edu.ng
ORCID iD: 0000-0002-4699-8166

Ph.D., M.Sc., Senior lecturer in the Department of Civil engineering

Ado-Ekiti, Ekiti State, Nigeria

Obumneme C. Onuoha

Afe Babalola university

Email: Obumonu45@gmail.com
ORCID iD: 0009-0003-7191-1581

Graduate of the Department of Civil Engineering

Ado-Ekiti, Ekiti State, Nigeria

Akintomiwa E. Fagbuyi

Afe Babalola university

Email: akinfagbuyi@gmail.com
ORCID iD: 0009-0002-0694-1728

Graduate of the Department of Civil Engineering

Ado-Ekiti, Ekiti State, Nigeria

References

  1. Eze F.O., Nnamani E. Effective supply chain network: A sustainable approach to waste management in South-Eastern Nigeria. International Digital Organization for Scientific Research Journal of Applied Sciences. 2019;4(1):74-85. Available from: https://www.idosr.org/wp-content/uploads/2019/04/IDOSR-JAS-41-74-85-2019.pdf (accessed: 03.04.2025).
  2. Risonarta V.Y., Anggono J., Suhendra Y.M., Nugrowibowo S., Jani Y. Strategy to improve recycling yield of aluminium cans. E3S Web of Conferences. 2019;130:01033. https://doi.org/10.1051/e3sconf/201913001033
  3. Wallace G. Production of secondary aluminium. In: Elsevier eBooks. 2011. p. 70-82. https://doi.org/10.1533/9780857090256.1.70
  4. Falde N., Falde N. How is Aluminium Recycled? Step by Step | Greentumble. Greentumble. 2020. Available from: https://greentumble.com/how-is-Aluminium-recycled (accessed: 03.04.2025).
  5. Nunes H., Emadinia O., Soares R., Vieira M.F., Reis A. Adding Value to Secondary Aluminium Casting Alloys: A review on Trends and Achievements. Materials. 2023;16(3):895. https://doi.org/10.3390/ma16030895 EDN: WAVSVT
  6. Brough D., Jouhara H. The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. International Journal of Thermofluids. 2020;1-2:100007. https://doi.org/10.1016/j.ijft.2019.100007 EDN: IRGUBX
  7. Zuo Z., Liu Y., Kang J., Yu G., Liu F., Zhao H. Basic physical properties of Aluminium alloys and their electrolyte systems prepared by Molten Salt electrolysis using black Aluminium dross as raw material. JOM. 2022;74(5):2037-2046. https://doi.org/10.1007/s11837-021-05149-0
  8. Mazzolani F.M. Structural applications of aluminium in civil engineering. Structural Engineering International. 2006;16(4):280-285. https://doi.org/10.2749/101686606778995128
  9. Kissell J.R., Ziemian R.D. The 2020 Aluminium Design Manual. Trinity Consultants, Bucknell University. 2019; 77(4):2.
  10. Mittelstedt C. Introduction to shell structures. In: Springer eBooks. 2023. p. 477-490. https://doi.org/10.1007/978-3-662-66805-4_14
  11. Steele C.R., Balch C.D. Introduction to the Theory of Plates. Stanford University. Retrieved 2020-12-14. 2009.
  12. Ali M.M., Al-Kodmany K. Structural systems for tall buildings. Encyclopedia. 2022;2(3):1260-1286. https://doi.org/10.3390/encyclopedia2030085
  13. Arslan E., Kayaturk D., Durmus M.R., Bagca I., Imamoglu T., Sert S. The role of utilizing load in different cases while numerical modeling of multi-story buildings on alluvial stratum: a comparison study. Arabian Journal for Science and Engineering. 2024;49(10):13845-13860. https://doi.org/10.1007/s13369-024-08800-5
  14. Van A.L. Reissner-Mindlin Plate Theory. In: Elsevier eBooks. 2017. p. 67-82. https://doi.org/10.1016/b978-1-78548-227-4.50004-6
  15. Abrate S. Impact on composite plates in contact with water. Dynamic Response and Failure of Composite Materials and Structures. In: Elsevier eBooks. 2017. p. 183-216. https://doi.org/10.1016/b978-0-08-100887-4.00006-8
  16. Wang C., Reddy J., Lee K. Chapter 1 - Introduction. Shear Deformable Beams and Plates Relationships with Classical Solutions 2000. p. 1-7. https://doi.org/10.1016/b978-008043784-2/50001-0
  17. Johnson D. Advanced structural mechanics: an introduction to continuum mechanics and structural mechanics. Nottingham Trent University. Thomas Telford; 2010. ISBN 0 7277 2860 1
  18. Remes H., Romanoff J., Lillemäe I., Frank D., Liinalampi S., Lehto P., & Varsta P. Factors affecting the fatigue strength of thin-plates in large structures. International Journal of Fatigue. 2026;101:397-407. https://doi.org/10.1016/j.ijfatigue.2016.11.019
  19. Torabi A.R., Campagnolo A., Berto F. Large-Scale yielding failure prediction of notched ductile plates by means of the linear elastic notch fracture mechanics. Strength of Materials. 2017;49(2):224-233. https://doi.org/10.1007/s11223-017-9861-9 EDN: RREBNY
  20. Obinna U. Buckling of Thin Plates - Structville. 2022. Available from: https://structville.com/2022/05/buckling-of-thin-plates.html (accessed: 03.04.2025).
  21. Audoly B. Buckling and Post-buckling of Plates. Encyclopedia of Continuum Mechanics. 2020. p. 222-237. https://doi.org/10.1007/978-3-662-55771-6_134
  22. Yu T. Buckling of Thin Plate. University of Massachusetts Lowell, Lowell, Massachusetts. 2017.
  23. Quiel S.E., Moreyra E. Calculating the buckling strength of steel plates exposed to fire. Thin-Walled Structures. 2010;48(9):684-695. https://doi.org/10.1016/j.tws.2010.04.001 EDN: OEJYKD
  24. Traub L.W. Examination and Prediction of the Lift Components of Low Aspect Ratio Rectangular Flat Plate Wings. Aerospace. 2023;10(7):597. https://doi.org/10.3390/aerospace10070597 EDN: ZSODWT
  25. Rawson K.J., Tupper E.C. 7 - Structural design and analysis. Basic Ship Theory (Fifth Edition). 2001. p. 237-285. https://doi.org/10.1016/B978-075065398-5/50010-8
  26. Shrivastava A., Singh R. Effect of aspect ratio on buckling of composite plates. Composites Science and Technology. 1999;59(3):439-445. https://doi.org/10.1016/s0266-3538(98)00087-6
  27. El-Sawy K.M., Nazmy A.S. Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes. Thin-Walled Structures. 2001;39(12):983-998. https://doi.org/10.1016/s0263-8231(01)00040-4
  28. Panda S.K., Ramachandra L. Buckling of rectangular plates with various boundary conditions loaded by non-uniform inplane loads. International Journal of Mechanical Sciences. 2010;52(6):819-828. https://doi.org/10.1016/j.ijmecsci.2010.01.009
  29. Wang C., Liu Q. Buckling behaviour of rectangular and skew plates with elastically restrained edges under non-uniform mechanical edge loading. PLoS ONE. 2024;19(9):e0308245-e0308245. https://doi.org/10.1371/journal.pone.0308245 EDN: VXQKWY
  30. Prabowo A.R., Ridwan R., Muttaqie T. On the Resistance to Buckling Loads of Idealized Hull Structures: FE Analysis on Designed-Stiffened Plates. Designs. 2022;6(3):46. https://doi.org/10.3390/designs6030046 EDN: PCPUXW
  31. Suleiman O.M.E., Osman M.Y., & Hassan T. Effect of Boundary Conditions on Buckling Load for Laminated Composite Plates. Global Journal of Engineering Sciences. 2019;2(1). https://doi.org/10.33552/gjes.2019.02.000527
  32. Shi P., Viet N., Yang J., Shou H., Li Q., Turan F. Free vibration and nonlinear transient analysis of blast-loaded FGM sandwich plates with stepped face sheets: Analytical and artificial neural network approaches. Thin-Walled Structures. 2024;206:112667-112667. https://doi.org/10.1016/j.tws.2024.112667 EDN: FZZWTS
  33. Ren G., Pan R., Sun F., Dong Z., Lan T. Advanced Analysis of Structural Performance in Novel Steel-Plate Concrete Containment Structures. Buildings. 2024;14(9):2771-2771. https://doi.org/10.3390/buildings14092771 EDN: BCHYZI
  34. Atuma I.M., Efe S.I., Ndakara O.E. Temperature trend in Niger Delta Region, Nigeria. Journal of Management and Social Science Research. 2023;4(1):29-39. https://doi.org/10.47524/jmssr.v4i1.30 EDN: JNEOPB
  35. Stresman G.H. Beyond temperature and precipitation: Ecological risk factors that modify malaria transmission. Acta Tropica. 2010;116(3):167-172. https://doi.org/10.1016/j.actatropica.2010.08.005
  36. Czerwinski F. Thermal stability of Aluminium alloys. Materials. 2020;13(15):3441. https://doi.org/10.3390/ma13153441 EDN: ZVPFGE
  37. Rajaram G., Kumaran S., Rao T.S. High temperature tensile and wear behaviour of Aluminium silicon alloy. Materials Science and Engineering A. 2010;528(1):247-253. https://doi.org/10.1016/j.msea.2010.09.020
  38. Summers P.T., Chen Y., Rippe C.M., Allen B., Mouritz A.P., Case S.W., Lattimer B.Y. Overview of Aluminium alloy mechanical properties during and after fires. Fire Science Reviews. 2015;4(1). https://doi.org/10.1186/s40038-015-0007-5
  39. Lemmon A., Weritz J. Fire Safety of Aluminium & Its Alloys. The Aluminium Association. 2021. Available from: https://www.Aluminium.org/sites/default/files/2021-11/FireSafetyAluminiumAlloys_9.8.20.pdf (accessed: 03.04.2025).
  40. Guo X., Tao L., Zhu S., Zong S. Experimental investigation of mechanical properties of Aluminium alloy at high and low temperatures. Journal of Materials in Civil Engineering. 2019;32(2). https://doi.org/10.1061/(asce)mt.1943-5533. 0003002 EDN: HOHMZH
  41. Su M., Young B. 10.37: Mechanical properties of high strength aluminium alloy at elevated temperatures. Special Issue:Proceedings of Eurosteel 2017. Ce/Papers. 2017;1(2-3):2831-2839. https://doi.org/10.1002/cepa.334
  42. Sharma R., Sharma K., Saraswat B.K. A review of the mechanical and chemical properties of aluminium alloys AA6262 T6 and its composites for turning process in the CNC. Materials Today: Proceedings. 2023. https://doi.org/10.1016/j.matpr.2023.01.421 EDN: MHBYWF
  43. Kissell J.R., Ferry R.L. Aluminium Structures: A Guide to Their Specifications and Design. John Wiley & Sons. 2002. ISBN 978-0-471-01965-7
  44. Baytak T., Tosun M., Ipek C., Mollamahmutoglu C., Bulut O. Thermal Stress Analysis for Functionally Graded Plates with Modulus Gradation, Part II. Experimental Mechanics. 2024;64(8):1229-1247. https://doi.org/10.1007/s11340-024-01091-9 EDN: TECQLZ
  45. Zhang H. Building Materials in Civil Engineering. Woodhead Publishing Series in Civil and Structural Engineering, 2011;423:7-28. ISBN 161344351X, 9781613443514
  46. Guo X., Tao L., Zhu S., Zong S. Experimental investigation of mechanical properties of Aluminium alloy at high and low temperatures. Journal of Materials in Civil Engineering. 2020;32(2):06019016. https://doi.org/10.1061/(asce)mt.1943-5533.0003002 EDN: HOHMZH

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).