Thermomechanical Performance of Steel and Recycled Aluminium Plates in Tropical Savanna Climatic Conditions
- Authors: Chiadighikaobi P.C.1, Onuoha O.C.1, Fagbuyi A.E.1
-
Affiliations:
- Afe Babalola university
- Issue: Vol 21, No 5 (2025)
- Pages: 474-494
- Section: Analytical and numerical methods of analysis of structures
- URL: https://journals.rcsi.science/1815-5235/article/view/380178
- DOI: https://doi.org/10.22363/1815-5235-2025-21-5-474-494
- EDN: https://elibrary.ru/DGNKGJ
- ID: 380178
Cite item
Full Text
Abstract
This research covers and compares the thermomechanical behavior of steel and recycled aluminium plates under concentrated loading and buckling conditions in several thermal conditions simulating the tropical savanna (Aw) climate. The study aims to explore their structural behavior as a function of temperature and evaluate their applicability in heat-sensitive applications. Finite element analysis (FEA) was used to model the buckling and deformation behavior of the two materials at temperatures from 0°C to 44°C and uniaxial loading of up to 100 MPa. The analytical and numerical solutions were compared; their results would differ no more than 5%, thus validating the FEA model. The steel plates generally buckled less (greater critical buckling load) in hotter thermal conditions than the aluminium. The buckling load of steel reduced by approximately 40% in Mode 1 when it went from 33°C to 44°C, while the buckling load of aluminium reduced by just 4.71%. The same trend was observed in Mode 2. These findings validate that recycled aluminium possesses superior thermomechanical stability to tropical thermal fluctuation and can be a good alternative as a material for structures in applications of high thermal fluctuation, which will be beneficial towards maximum utilization of resources in building engineering.
About the authors
Paschal Ch. Chiadighikaobi
Afe Babalola university
Author for correspondence.
Email: chiadighikaobi.paschalc@abuad.edu.ng
ORCID iD: 0000-0002-4699-8166
Ph.D., M.Sc., Senior lecturer in the Department of Civil engineering
Ado-Ekiti, Ekiti State, NigeriaObumneme C. Onuoha
Afe Babalola university
Email: Obumonu45@gmail.com
ORCID iD: 0009-0003-7191-1581
Graduate of the Department of Civil Engineering
Ado-Ekiti, Ekiti State, NigeriaAkintomiwa E. Fagbuyi
Afe Babalola university
Email: akinfagbuyi@gmail.com
ORCID iD: 0009-0002-0694-1728
Graduate of the Department of Civil Engineering
Ado-Ekiti, Ekiti State, NigeriaReferences
- Eze F.O., Nnamani E. Effective supply chain network: A sustainable approach to waste management in South-Eastern Nigeria. International Digital Organization for Scientific Research Journal of Applied Sciences. 2019;4(1):74-85. Available from: https://www.idosr.org/wp-content/uploads/2019/04/IDOSR-JAS-41-74-85-2019.pdf (accessed: 03.04.2025).
- Risonarta V.Y., Anggono J., Suhendra Y.M., Nugrowibowo S., Jani Y. Strategy to improve recycling yield of aluminium cans. E3S Web of Conferences. 2019;130:01033. https://doi.org/10.1051/e3sconf/201913001033
- Wallace G. Production of secondary aluminium. In: Elsevier eBooks. 2011. p. 70-82. https://doi.org/10.1533/9780857090256.1.70
- Falde N., Falde N. How is Aluminium Recycled? Step by Step | Greentumble. Greentumble. 2020. Available from: https://greentumble.com/how-is-Aluminium-recycled (accessed: 03.04.2025).
- Nunes H., Emadinia O., Soares R., Vieira M.F., Reis A. Adding Value to Secondary Aluminium Casting Alloys: A review on Trends and Achievements. Materials. 2023;16(3):895. https://doi.org/10.3390/ma16030895 EDN: WAVSVT
- Brough D., Jouhara H. The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. International Journal of Thermofluids. 2020;1-2:100007. https://doi.org/10.1016/j.ijft.2019.100007 EDN: IRGUBX
- Zuo Z., Liu Y., Kang J., Yu G., Liu F., Zhao H. Basic physical properties of Aluminium alloys and their electrolyte systems prepared by Molten Salt electrolysis using black Aluminium dross as raw material. JOM. 2022;74(5):2037-2046. https://doi.org/10.1007/s11837-021-05149-0
- Mazzolani F.M. Structural applications of aluminium in civil engineering. Structural Engineering International. 2006;16(4):280-285. https://doi.org/10.2749/101686606778995128
- Kissell J.R., Ziemian R.D. The 2020 Aluminium Design Manual. Trinity Consultants, Bucknell University. 2019; 77(4):2.
- Mittelstedt C. Introduction to shell structures. In: Springer eBooks. 2023. p. 477-490. https://doi.org/10.1007/978-3-662-66805-4_14
- Steele C.R., Balch C.D. Introduction to the Theory of Plates. Stanford University. Retrieved 2020-12-14. 2009.
- Ali M.M., Al-Kodmany K. Structural systems for tall buildings. Encyclopedia. 2022;2(3):1260-1286. https://doi.org/10.3390/encyclopedia2030085
- Arslan E., Kayaturk D., Durmus M.R., Bagca I., Imamoglu T., Sert S. The role of utilizing load in different cases while numerical modeling of multi-story buildings on alluvial stratum: a comparison study. Arabian Journal for Science and Engineering. 2024;49(10):13845-13860. https://doi.org/10.1007/s13369-024-08800-5
- Van A.L. Reissner-Mindlin Plate Theory. In: Elsevier eBooks. 2017. p. 67-82. https://doi.org/10.1016/b978-1-78548-227-4.50004-6
- Abrate S. Impact on composite plates in contact with water. Dynamic Response and Failure of Composite Materials and Structures. In: Elsevier eBooks. 2017. p. 183-216. https://doi.org/10.1016/b978-0-08-100887-4.00006-8
- Wang C., Reddy J., Lee K. Chapter 1 - Introduction. Shear Deformable Beams and Plates Relationships with Classical Solutions 2000. p. 1-7. https://doi.org/10.1016/b978-008043784-2/50001-0
- Johnson D. Advanced structural mechanics: an introduction to continuum mechanics and structural mechanics. Nottingham Trent University. Thomas Telford; 2010. ISBN 0 7277 2860 1
- Remes H., Romanoff J., Lillemäe I., Frank D., Liinalampi S., Lehto P., & Varsta P. Factors affecting the fatigue strength of thin-plates in large structures. International Journal of Fatigue. 2026;101:397-407. https://doi.org/10.1016/j.ijfatigue.2016.11.019
- Torabi A.R., Campagnolo A., Berto F. Large-Scale yielding failure prediction of notched ductile plates by means of the linear elastic notch fracture mechanics. Strength of Materials. 2017;49(2):224-233. https://doi.org/10.1007/s11223-017-9861-9 EDN: RREBNY
- Obinna U. Buckling of Thin Plates - Structville. 2022. Available from: https://structville.com/2022/05/buckling-of-thin-plates.html (accessed: 03.04.2025).
- Audoly B. Buckling and Post-buckling of Plates. Encyclopedia of Continuum Mechanics. 2020. p. 222-237. https://doi.org/10.1007/978-3-662-55771-6_134
- Yu T. Buckling of Thin Plate. University of Massachusetts Lowell, Lowell, Massachusetts. 2017.
- Quiel S.E., Moreyra E. Calculating the buckling strength of steel plates exposed to fire. Thin-Walled Structures. 2010;48(9):684-695. https://doi.org/10.1016/j.tws.2010.04.001 EDN: OEJYKD
- Traub L.W. Examination and Prediction of the Lift Components of Low Aspect Ratio Rectangular Flat Plate Wings. Aerospace. 2023;10(7):597. https://doi.org/10.3390/aerospace10070597 EDN: ZSODWT
- Rawson K.J., Tupper E.C. 7 - Structural design and analysis. Basic Ship Theory (Fifth Edition). 2001. p. 237-285. https://doi.org/10.1016/B978-075065398-5/50010-8
- Shrivastava A., Singh R. Effect of aspect ratio on buckling of composite plates. Composites Science and Technology. 1999;59(3):439-445. https://doi.org/10.1016/s0266-3538(98)00087-6
- El-Sawy K.M., Nazmy A.S. Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes. Thin-Walled Structures. 2001;39(12):983-998. https://doi.org/10.1016/s0263-8231(01)00040-4
- Panda S.K., Ramachandra L. Buckling of rectangular plates with various boundary conditions loaded by non-uniform inplane loads. International Journal of Mechanical Sciences. 2010;52(6):819-828. https://doi.org/10.1016/j.ijmecsci.2010.01.009
- Wang C., Liu Q. Buckling behaviour of rectangular and skew plates with elastically restrained edges under non-uniform mechanical edge loading. PLoS ONE. 2024;19(9):e0308245-e0308245. https://doi.org/10.1371/journal.pone.0308245 EDN: VXQKWY
- Prabowo A.R., Ridwan R., Muttaqie T. On the Resistance to Buckling Loads of Idealized Hull Structures: FE Analysis on Designed-Stiffened Plates. Designs. 2022;6(3):46. https://doi.org/10.3390/designs6030046 EDN: PCPUXW
- Suleiman O.M.E., Osman M.Y., & Hassan T. Effect of Boundary Conditions on Buckling Load for Laminated Composite Plates. Global Journal of Engineering Sciences. 2019;2(1). https://doi.org/10.33552/gjes.2019.02.000527
- Shi P., Viet N., Yang J., Shou H., Li Q., Turan F. Free vibration and nonlinear transient analysis of blast-loaded FGM sandwich plates with stepped face sheets: Analytical and artificial neural network approaches. Thin-Walled Structures. 2024;206:112667-112667. https://doi.org/10.1016/j.tws.2024.112667 EDN: FZZWTS
- Ren G., Pan R., Sun F., Dong Z., Lan T. Advanced Analysis of Structural Performance in Novel Steel-Plate Concrete Containment Structures. Buildings. 2024;14(9):2771-2771. https://doi.org/10.3390/buildings14092771 EDN: BCHYZI
- Atuma I.M., Efe S.I., Ndakara O.E. Temperature trend in Niger Delta Region, Nigeria. Journal of Management and Social Science Research. 2023;4(1):29-39. https://doi.org/10.47524/jmssr.v4i1.30 EDN: JNEOPB
- Stresman G.H. Beyond temperature and precipitation: Ecological risk factors that modify malaria transmission. Acta Tropica. 2010;116(3):167-172. https://doi.org/10.1016/j.actatropica.2010.08.005
- Czerwinski F. Thermal stability of Aluminium alloys. Materials. 2020;13(15):3441. https://doi.org/10.3390/ma13153441 EDN: ZVPFGE
- Rajaram G., Kumaran S., Rao T.S. High temperature tensile and wear behaviour of Aluminium silicon alloy. Materials Science and Engineering A. 2010;528(1):247-253. https://doi.org/10.1016/j.msea.2010.09.020
- Summers P.T., Chen Y., Rippe C.M., Allen B., Mouritz A.P., Case S.W., Lattimer B.Y. Overview of Aluminium alloy mechanical properties during and after fires. Fire Science Reviews. 2015;4(1). https://doi.org/10.1186/s40038-015-0007-5
- Lemmon A., Weritz J. Fire Safety of Aluminium & Its Alloys. The Aluminium Association. 2021. Available from: https://www.Aluminium.org/sites/default/files/2021-11/FireSafetyAluminiumAlloys_9.8.20.pdf (accessed: 03.04.2025).
- Guo X., Tao L., Zhu S., Zong S. Experimental investigation of mechanical properties of Aluminium alloy at high and low temperatures. Journal of Materials in Civil Engineering. 2019;32(2). https://doi.org/10.1061/(asce)mt.1943-5533. 0003002 EDN: HOHMZH
- Su M., Young B. 10.37: Mechanical properties of high strength aluminium alloy at elevated temperatures. Special Issue:Proceedings of Eurosteel 2017. Ce/Papers. 2017;1(2-3):2831-2839. https://doi.org/10.1002/cepa.334
- Sharma R., Sharma K., Saraswat B.K. A review of the mechanical and chemical properties of aluminium alloys AA6262 T6 and its composites for turning process in the CNC. Materials Today: Proceedings. 2023. https://doi.org/10.1016/j.matpr.2023.01.421 EDN: MHBYWF
- Kissell J.R., Ferry R.L. Aluminium Structures: A Guide to Their Specifications and Design. John Wiley & Sons. 2002. ISBN 978-0-471-01965-7
- Baytak T., Tosun M., Ipek C., Mollamahmutoglu C., Bulut O. Thermal Stress Analysis for Functionally Graded Plates with Modulus Gradation, Part II. Experimental Mechanics. 2024;64(8):1229-1247. https://doi.org/10.1007/s11340-024-01091-9 EDN: TECQLZ
- Zhang H. Building Materials in Civil Engineering. Woodhead Publishing Series in Civil and Structural Engineering, 2011;423:7-28. ISBN 161344351X, 9781613443514
- Guo X., Tao L., Zhu S., Zong S. Experimental investigation of mechanical properties of Aluminium alloy at high and low temperatures. Journal of Materials in Civil Engineering. 2020;32(2):06019016. https://doi.org/10.1061/(asce)mt.1943-5533.0003002 EDN: HOHMZH
Supplementary files

