Numerical Modeling of Change of Shape of Flexible Bars

Cover Page

Cite item

Full Text

Abstract

Flexible bars experiencing large displacements and small strains during loading are investigated. The purpose of the study: numerical analysis of the stress-strain state of flexible bars, taking into account geometric nonlinearity in a three-dimensional formulation. The displacement-based finite element method is used as the mathematical framework. The process of shape changing of the bar was modeled by incremental loading in combination with the restructuring of the geometry of the model, taking into account the resulting displacements. The bar was modeled using rectilinear beam finite elements connected at adjacent nodes by linear and rotational combined elements with variable stiffness. To conduct computational experiments, macros in the APDL language, embedded in the ANSYS Mechanical software, were written and verified. Numerical experiments were performed using finite element models with elastic hinges and without hinges. Based on the results obtained, it is established that the proposed direct incremental algorithm for solving geometrically nonlinear problems of structural mechanics is absolutely convergent. The developed method of defining the stiffness of rotational springs can be used in modeling spatial unstable frames.

About the authors

Peter P. Gaidzhurov

Don State Technical University

Author for correspondence.
Email: gpp-161@yandex.ru
ORCID iD: 0000-0003-3913-9694
SPIN-code: 6812-9718

Advisor of the Russian Academy of Architecture and Construction Sciences, Doctor of Technical Sciences, Professor of the Department of Structural Mechanics and Theory of Structures

1 Gagarin Sq., Rostov-on-Don, 344003, Russian Federation

Nikita B. Danik

Don State Technical University

Email: danik3777@mail.ru
ORCID iD: 0009-0007-3766-6913

Postgraduate Student of the Department of Structural Mechanics and Theory of Structures

1 Gagarin Sq., Rostov-on-Don, 344003, Russian Federation

Alexander V. Klimukh

Don State Technical University

Email: sancho.klimukh.96@mail.ru
ORCID iD: 0009-0001-8844-2123

Postgraduate Student of the Department of Structural Mechanics and Theory of Structures

1 Gagarin Sq., Rostov-on-Don, 344003, Russian Federation

References

  1. Dykhovichny Yu.A. Large-span structures of the 1980 Olympics in Moscow. Moscow: Stroyizdat Publ.; 1982. (In Russ.) Available from: https://dwg.ru/lib/1136 (accessed: 21.04.2025).
  2. Perelmuter A.V., Slivker V.I. Models of structures and the possibility of their analysis. Moscow: DMK Press; 2007. (In Russ.) ISBN 5940743528
  3. Kancheli N.V. Spatial building structures. Moscow: DIA Publ.; 2003. (In Russ.) ISBN 5-93093-206-9 EDN: QNKFNR
  4. Sekulovich M. The finite element method. Moscow: Stroyizdat Publ.; 1993. (In Russ.) ISBN 5-274-01755-X
  5. Popov E.P. Theory and calculation of flexible elastic bars. Moscow: Nauka Publ.; 1986. (In Russ.) EDN: WIWUQV
  6. Svetlitsky V.A. Mechanics of flexible bars and threads. Moscow: Mashinostroenie, 1978. (In Russ.) Available from: https://djvu.online/file/3q69M4Xs4OLyq (accessed: 21.04.2025).
  7. Popov V.V., Sorokin F.D., Ivannikov V.V. A flexible rod finite element with separate storage of cumulated and extra rotations for large displacements of aircraft structural parts modeling. Proceedings of MAI. 2017;(92):3. (In Russ.) EDN: YKVJZF
  8. Nizametdinov F.R., Sorokin F.D. Euler vector application specifics for large turns description while flying vehicles structural elements modeling on the example of a rod finite element. Proceedings of MAI. 2018;(102):1. (In Russ.) EDN: YQONFZ
  9. Battini J.M., Pacoste C. Co-rotational beam elements with warping effects in instability problems. Comput. Computer Methods in Applied Mechanics and Engineering. 2002;191:1755–1789. EDN: ATXRQJ
  10. Hsiao K.-M., Horng H.-J., Chen Y.-R. A corotational procedure that handles large structures of spatial beam structures. Computers & Structures. 1987;27(6):769–781.
  11. Sakharov A.S., Kislooky V.N., Kirichevsky V.V. et al. Finite element method in solid mechanics. A.S. Sakharov and I. Altenbach (eds.). Kiev: Vischa School Publ.; 1982. Available from: https://dwg.ru/dnl/6757 (accessed: 21.04.2025)
  12. Wu G., He X., Pai P.F. Geometrically exact 3D beam element for arbitrary large rigid-elastic deformation analysis of aerospace structures. Finite Elements in Analysis and Design. 2011;47(4):402–412. https://doi.org/10.1016/j.finel.2010. 11.008 EDN: OEKSAX
  13. Albino J.C.R., Almeida C.A., Menezes I.F.M., Paulino G.H. Co-rotational 3D beam element for nonlinear dynamic analysis of risers manufactured with functionally graded materials (FGMs). Engineering Structures. 2018;173:283–299. https://doi.org/10.1016/j.engstruct.2018.05.092 EDN: VHHBLD
  14. Naumov A.M. The application of the method of successive loadings when solving problems of mechanics of flat rods. BMSTU Journal of Mechanical Engineering. 2016;12:33–42. (In Russ.) EDN: XECQGD
  15. Kang J., Homel M.A., Herbold E.B. Beam elements with frictional contact in the material point method. International Journal for Numerical Methods in Engineering. 2021;123(4):1013–1035. https://doi.org/10.1002/nme.6886
  16. Russkikh S.V. Deploying a planar elastic rod system with cable elements attached to a spacecraft. BMSTU Journal of Mechanical Engineering. 2018;4:80–90. (In Russ.) https://doi.org/10.18698/0536-1044-2018-4-80-90 EDN: XOCSKT
  17. Popov A.N., Lovtsov A.D. Frictional contact problem in building constructions analysis. Magazine of Civil Engineering. 2020;100(8):10001. https://doi.org/10.18720/MCE.100.1 EDN: GHIKRQ

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).