Triangular Layered Finite Element Method for Reinforced Concrete Slabs
- Authors: Mawlood D.A.1, Koyankin A.A.1
-
Affiliations:
- Siberian Federal University
- Issue: Vol 21, No 5 (2025)
- Pages: 441-461
- Section: Analytical and numerical methods of analysis of structures
- URL: https://journals.rcsi.science/1815-5235/article/view/380176
- DOI: https://doi.org/10.22363/1815-5235-2025-21-5-441-461
- EDN: https://elibrary.ru/DEEXQA
- ID: 380176
Cite item
Full Text
Abstract
This study presents an advanced layered triangular finite element method for modeling reinforced concrete (RC) slabs, incorporating material nonlinearity based on a refined global-local plate theory. The RC slab's cross-section is discretized into concrete and steel layers, each modeled as an individual plate element with distinct material properties. The proposed formulation independently considers displacement field variables and out-of-plane stress components, enabling precise nodal stress determination through constitutive relationships. A three-node triangular element maintaining C1-continuity is employed for spatial discretization, with governing equations derived using a triangular layered plate theory. Benchmark verification studies confirm the method’s computational accuracy and efficiency, with ultimate deflection predictions exhibiting errors ranging from 2.59% (minimum) to 11.2% (maximum). Comprehensive numerical tests demonstrate that the proposed triangular layered finite element approach delivers high-precision solutions while significantly reducing computational expense.
About the authors
Dara A. Mawlood
Siberian Federal University
Author for correspondence.
Email: dara.mawloud@univsul.edu.iq
ORCID iD: 0009-0003-2819-3107
Master student, Department of Building Structures and Controlled Systems, Institute of Civil Engineering
79 Svobodny аv., 660041, Krasnoyarsk, Russian FederationAlexandr A. Koyankin
Siberian Federal University
Email: KoyankinAA@mail.ru
ORCID iD: 0000-0001-5271-9904
SPIN-code: 2779-8314
Candidate of Technical Sciences, Associate Professor of the Department of Building Structures and Controlled Systems, Institute of Civil Engineering
79 Svobodny аv., 660041, Krasnoyarsk, Russian FederationReferences
- Le C.V., Ho V.Q., Ho P.L.H., Nguyen P.H. Limit state analysis of thin plates and slabs by a numerical pseudo-lower yield design approach. Thin-Walled Structures. 2022;172:108852. https://doi.org/10.1002/suco.202100532 EDN: BXJDTD
- Issa M.S., Metwally I.M., Elzeiny S.M. Influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP rebars. Engineering Structures. 2011;33:1754-1763. https://doi.org/10.1016/j.engstruct.2011.02.014
- Amirkhani S., Lezgy Nazargah M. Nonlinear finite element analysis of reinforced concrete columns: Evaluation of different modeling approaches for considering stirrup confinement effects. Structural Concrete. 2022;23:2820-2836. https://doi.org/10.1002/suco.202100532 EDN: BXJDTD
- Yeganeh-Salman A., Lezgy-Nazargah M. Evaluating the accuracy of mass scaling method in non-linear quasi-static finite element analysis of RC structures. Structural Engineering and Mechanics. 2023;85:485-500. https://doi.org/10.12989/SEM.2023.85.4.485
- Szilard R. Theories and applications of plate analysis: classical, numerical, and engineering methods. Hoboken, NJ: John Wiley; 2004.
- Werkle H. Finite elements in structural analysis: Theoretical concepts and modeling procedures in statics and dynamics of structures. Cham: Springer International Publ.; 2021. https://doi.org/10.1007/978-3-030-49840-5
- Harmon T.G., Zhangyuan N. Shear strength of reinforced concrete plates and shells determined by finite element analysis using layered elements. J Struct Eng. 1989;115:1141-1157. https://doi.org/10.1061/(ASCE)0733-9445(1989)115: 5(1141)
- Polak M.A. Modeling punching shear of reinforced concrete slabs using layered finite elements. SJ. 1998;95(1): 71-80. https://doi.org/10.14359/528
- Mahmood D., Rafiq S., Adbullah M. Nonlinear 3D Finite element model for square composite columns under various parameters. Iraqi Journal of Civil Engineering. 2022;16:19-28. https://doi.org/10.37650/ijce.2022.172882 EDN: NRXGDK
- Mawlood D., Rafiq S. Nonlinear 3D Finite element model for round composite columns under various eccentricity loads. Engineering and Technology Journal. 2022;40:1605-1614. https://doi.org/10.30684/etj.2022.133106.1168 EDN: QTWLPF
- Mittelstedt C. Basics of elasticity theory. Theory of plates and shells. Berlin, Heidelberg: Springer Berlin Heidelberg; 2023. p. 3-57. https://doi.org/10.1007/978-3-662-66805-4_1
- Timošenko S.P., Woinowsky-Krieger S. Theory of plates and shells. 2nd. ed., [Nachdr.]. New York: McGraw-Hill; 1996.
- Oñate E. Structural analysis with the finite element method: linear statics. Dordrecht London: Springer; 2009.
- Jiang J., Mirza F.A. Nonlinear analysis of reinforced concrete slabs by a discrete finite element approach. Computers & Structures. 1997;65:585-592. https://doi.org/10.1016/S0045-7949(94)E0269-8
- Saiah B., Bachene M., Guemana M., Chiker Y., Attaf B. On the free vibration behavior of nanocomposite laminated plates contained piece-wise functionally graded graphene-reinforced composite plies. Engineering Structures. 2022; 253:113784. https://doi.org/10.1016/j.engstruct.2021.113784 EDN: IKFKRC
- Rodrigues Da Silva A., Paulo De Souza Rosa J. Nonlinear numerical analysis of prestressed concrete beams and slabs. Engineering Structures. 2020;223:111187. https://doi.org/10.1016/j.engstruct.2020.111187 EDN: AYEZIR
- Van Vinh P., Avcar M., Belarbi M.-O., Tounsi A., Quang Huy L. A new higher-order mixed four-node quadrilateral finite element for static bending analysis of functionally graded plates. Structures. 2023;47:1595-1612. https://doi.org/10.1016/j.istruc.2022.11.113 EDN: GLXCXE
- Cinefra M., Kumar S.K., Carrera E. MITC9 Shell elements based on RMVT and CUF for the analysis of laminated composite plates and shells. Composite Structures. 2019;209:383-90. https://doi.org/10.1016/j.compstruct.2018.10.039 EDN: WUDZCK
- Moleiro F., Mota Soares C.M., Mota Soares C.A., Reddy J.N. A layerwise mixed least-squares finite element model for static analysis of multilayered composite plates. Computers & Structures. 2011;89:1730-1742. https://doi.org/10.1016/j.compstruc.2010.10.008
- Liguori F.S., Corrado A., Bilotta A., Madeo A. A layer-wise plasticity-based approach for the analysis of reinforced concrete shell structures using a mixed finite element. Engineering Structures. 2023;285:116045. https://doi.org/10.1016/j.engstruct.2023.116045 EDN: XEVDXS
- Wang R., Fang Z., Lezgy-Nazargah M., Khosravi H. Nonlinear analysis of reinforced concrete slabs using a quasi-3D mixed finite element formulation. Engineering Structures. 2023;294:116781. https://doi.org/10.1016/j.engstruct.2023. 116781 EDN: HKKQXZ
- Zhang Y.-G., Lu M.-W., Hwang K.-C. Finite element modeling of reinforced concrete structures. Finite Elements in Analysis and Design. 1994;18:51-8. https://doi.org/10.1016/0168-874X(94)90089-2
- Zhang Y.X., Bradford M.A., Gilbert R.I. A new triangular layered plate element for the non-linear analysis of reinforced concrete slabs. Commun Numer Meth Engng. 2005;22:699-709. https://doi.org/10.1002/cnm.840
- Willam K., Pramono E., Sture S. Fundamental issues of smeared crack models. In: Shah SP, Swartz SE, editors. Fracture of Concrete and Rock. New York, NY: Springer New York; 1989. p. 142-157. https://doi.org/10.1007/978-1-4612-3578-1_15
- Mohamed M.S., Thamboo J.A., Jeyakaran T. Experimental and numerical assessment of the flexural behaviour of semi-precast-reinforced concrete slabs. Advances in Structural Engineering. 2020;23:1865-1879. https://doi.org/10.1177/1369433220904011 EDN: GDQHBJ
- Nurmi S., Hoult N.A., Howell S.D. Distributed strain monitoring of two-way slabs. Engineering Structures. 2019;189:580-588. https://doi.org/10.1016/j.engstruct.2019.04.002
- Xiao Y., Li B., Fujikake K. Experimental study of reinforced concrete slabs under different loading rates. ACI Structural Journal. 2016;113. https://doi.org/10.14359/51688067
Supplementary files

