Optimization of Section Parameters of Finite Stiffness Cable Under Transverse Impact
- Authors: Tarasov D.A.1
-
Affiliations:
- Penza State Technological University
- Issue: Vol 21, No 3 (2025)
- Pages: 216-230
- Section: Analytical and numerical methods of analysis of structures
- URL: https://journals.rcsi.science/1815-5235/article/view/325909
- DOI: https://doi.org/10.22363/1815-5235-2025-21-3-216-230
- EDN: https://elibrary.ru/SXAGEC
- ID: 325909
Cite item
Full Text
Abstract
A cable of finite stiffness is a model for a wide range of load-bearing structures, such as large-span suspended roofs of public and industrial buildings. At the same time, a new class of engineering structures has appeared relatively recently, designed to create an insurmountable physical obstacle to unauthorized movement of vehicles. The main elements that ensure the overall strength and rigidity of such structures are ring-shaped steel sections, which resist lateral impact. In this regard, there is a need to solve problems of optimal design of these elements. The objective of this study is to create a method that allows setting and solving the designated problems. The developed method is based on single-criterion multiparameter conditional optimization, the Bubnov-Galerkin method, as well as integral and differential calculus of multivariate functions. Verification of the proposed modeling technology is carried out. Discrepancies in the values of the adopted criteria for assessing the accuracy of the obtained results stay within the permissible errors in solving engineering problems. Using the developed method, the studies were conducted and the influence of the ratio of the internal to external diameter of the ring section on the weight and size characteristics, as well as the behavior of the bending-rigid cable under the action of a short-term dynamic load was revealed.
About the authors
Denis A. Tarasov
Penza State Technological University
Author for correspondence.
Email: tda82@list.ru
ORCID iD: 0000-0001-7685-0325
SPIN-code: 7690-5877
Candidate of Technical Sciences, Associate Professor of the Department of Automation and Control
1a/11, Baydukova proezd/Gagarina St, Penza, 440039, Russian FederationReferences
- Mei L., Wang Q. Structural optimization in civil engineering: a literature review. Buildings. 2021;11(2):66. http://doi.org/10.3390/buildings11020066 EDN: RJHRXX
- Zhang H., Lu J., Li Na. Study on internal force optimization and control of a Levy cable dome. Journal of Constructional Steel Research. 2024;221:108868. http://doi.org/10.1016/j.jcsr.2024108868 EDN: RRLMWT
- Zhao L., Cao Zh., Wang Zh., Fan F. Initial prestress design and optimization of cable-stiffened latticed shells. Journal of Constructional Steel Research. 2021;184:106759. http://doi.org/10.1016/j.jcsr.2021.106759 EDN: MHNWTF
- Sernizon Costa R., Cesar Campos Lavall A., Gomes Lanna Da Silva R., Porcino dos Santos A., Francisco Viana H. Cable structures: An exact geometric analysis using catenary curve and considering the material nonlinearity and temperature effect. Engineering Structures. 2022;253:113738. http://doi.org/10.1016/j.engstruct.2021.113738 EDN: LWEHYS
- Li F., Wu Ju., Arbabi F., Liu Sh. A semi-analytical formulation for suspended cables with singularity method. Engineering Structures. 2023;295:116809. http://doi.org/10.1016/j.engstruct.2023.116809 EDN: FMQGVX
- Alshannaq A.A., Tamimi M.F., Abu Qamar Mu.A.I. Sensitivity and optimization analysis of torsional behavior in multicellular thin-walled tubes. Civil Engineering Journal. 2024;10(9):2902–2918. http://doi.org/10.28991/cej-2024-010-09-09 EDN: WQAJPN
- Yin L., Deng T., Niu Yu, Li Zh. Free-form shape optimization of advanced high-strength steel members. Buildings. 2022;12(12):2101. http://doi.org/10.3390/buildings12122101 EDN: BXLMUD
- El Ouardani A., Tbatou T. Seismic isolators layout optimization using genetic algorithm within the pymoo framework. Civil Engineering Journal. 2024;10(8):2517–2535. http://doi.org/10.28991/cej-2024-010-08-07 EDN: AEADOM
- Lee D., Shon S., Lee S., Ha Ju. Size and topology optimization of truss structures using quantum-based HS algorithm. Buildings. 2023;13(6):1436. http://doi.org/10.3390/buildings13061436 EDN NSTKBZ
- Stulpinas M., Daniūnas A. Optimization of cold-formed thin-walled cross-sections in portal frames. Buildings. 2024;14(8):2565. http://doi.org/10.3390/buildings14082565 EDN: LOMRGO
- Li P., Zhao X., Ding D., Li X., Zhao Ya., Ke Lu., Zhang X., Jian B. Optimization Design for steel trusses based on a genetic algorithm. Buildings. 2023;13(6):1496. http://doi.org/10.3390/buildings13061496 EDN: VIMFUG
- Akhtyamova L.Sh., Yaziev B.M., Chepurnenko A.S., Sabitov L.S. Trihedral lattice supports geometry optimization according to the stability criterion. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(4):317–328. (In Russ.) http://doi.org/10.22363/1815-5235-2022-18-4-317-328 EDN: UZSBNA
- Marutyan A.S. I-beam bent-welded profiles and calculation of their optimal parameters. Structural Mechanics and Analysis of Constructions. 2020;(2):67–76. (In Russ.) http://doi.org/10.37538/0039-2383.2020.2.67.76 EDN: AOBCTX
- Yurchenko V.V., Peleshko I.D., Biliaiev N.A. Application of gradient projection method to parametric optimization of steel lattice portal frame. International Journal for Computational Civil and Structural Engineering. 2021;17(3):132–156. http://doi.org/10.22337/2587-9618-2021-17-3-132-156 EDN: OCTTSX
- Bazhin G.M. Optimal dimensions of steel welded beams with hinged support units. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2023;18(11):1731–1744. (In Russ.) http://doi.org/10.22227/1997-0935.2023.11.1731-1744 EDN: XVGPCB
- Kiselev V.G., Sergeev O.A., Sergeeva S.A., Komarova E.I. Planar topological optimization under static and kinematic influences. Problems of strength and plasticity. 2023;85(3):323–339. (In Russ.) http://doi.org/10.32326/1814-9146-2023-85-3-323-339 EDN: XLOWWB
- Tarasov D.A. Numerical and experimental study of the behavior of protective structures under impact. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2024;19(5):729–739. (In Russ.) http://doi.org/10.22227/1997-0935.2024.5.729-739 EDN: PKDUYI
- Kuzhakhmetova E.R. Stress-strain state cylinder-plate-cable-stayed roof buildings (structures) with various forms of external support contour. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(2):95–110. (In Russ.) http://doi.org/10.22363/1815-5235-2020-16-2-95-110 EDN: RUOFTA
- Zhao Zh., Kang Z., Zhang T., Zhao B., Zhang D., Yan R. Topology optimization algorithm for spatial truss based on numerical inverse hanging method. Journal of Constructional Steel Research. 2024;219:108764. http://doi.org/10.1016/j.jcsr.2024.108764 EDN: BZNQCA
- Bryukvin A.V., Bryukvina O.Y. Strain energy method for solving wave problems of a flexible thread. Engineering Journal: Science and Innovation. 2020;(5):1. (In Russ.) http://doi.org/10.18698/2308-6033-2020-5-1977 EDN: NZDMQR
- Averin A.N. Calculation models of flexible threads. News of Higher Educational Institutions. Construction. 2020;(9):5–19. (In Russ.) http://doi.org/10.32683/0536-1052-2020-741-9-5-19 EDN: YFKYTO
- Tarasov D.A. Application of THE bubnov-galerkin method to analyze the behavior of a flexurally rigid thread under transverse impact. Structural Mechanics and Analysis of Constructions. 2024;(2):26–32. (In Russ.) http://doi.org/10.37538/0039-2383.2024.2.26.32 EDN: FFJRGA
- Mishchenko V.V. Parametric equation for a catenary to calculate flexible thread. Structural Mechanics and Analysis of Constructions. 2020;(4):40–46. (In Russ.) http://doi.org/10.37538/0039-2383.2020.4.40.46 EDN: PCVOUC
- Mishchenko V.V. Applied problems of suspension of heavy flexible thread in general. Structural Mechanics and Analysis of Constructions. 2022;(1):59–65. http://doi.org/10.37538/0039-2383.2022.1.59.65 EDN: HFBNAH
- Lyakhovich L.S., Akimov P.A., Tukhfatullin B.A. Assessment criterion for optimum design solutions of piecewise constant sections in rods of rectangular cross-section with stability or first eigen-frequency limits. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta — Journal of Construction and Architecture. 2020;22(1):75–91. (In Russ.) http://doi.org/10.31675/1607-1859-2020-22-1-75-91 EDN: YOAVPD
- Wang Z., Tsavdaridis K.D. Optimality criteria-based minimum-weight design method for modular building systems subjected to generalised stiffness constraints: A comparative study. Engineering Structures. 2022;251:113472. http://doi.org/10.1016/j.engstruct.2021.113472 EDN: OEHRVD
- Kabanov S.A., Zimin B.A., Mitin F.V. Development and research of mathematical models of deployment of mobole parts of transformable space construction. Part II. Mechatronics, Automation, Control. 2020;21(2):117–128. (In Russ.) http://doi.org/10.17587/mau.21.117-128 EDN: ATZCEN
- Sufiyanov V.G., Kljukin D.A., Rusyak I.G. The Nelder-Meade method for solving the problem of optimizing the geometric shape of an automatic cannon barrel to improve oscillatory characteristics. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2023;25(4):121–131. (In Russ.) http://doi.org/10.37313/1990-5378-2023-25-4-121-131 EDN: RBKFKX
Supplementary files
