Parameterization of Maxwell - Cremona Diagram for Determining Forces in Elements of a Scissors Truss

Cover Page

Cite item

Full Text

Abstract

An analysis of changing patterns of the values of member forces in a scissors truss, depending on the position of connections of its lower chords to the upper chords, is performed. Exploring effective truss structure designs in terms of balanced combination of maximum strength and minimum weight is a sustainable approach to a more rational use of building materials and the development of green construction. This determines the relevance of this area of research. The analysis of configurations of the truss under study was performed using the parameterized Maxwell - Cremona diagram. Such diagram is a visually informative tool in presenting the calculation results and it fully reflects the relationship between the member forces and the parameters of the structure. The research process was performed using the MS Excel spreadsheet editor. This eventually developed into a software tool for finding effective scissors truss designs, which has full potential for further improvement and development. Thus, the functionality of the tool can be easily expanded to designing scissors trusses made of various structural materials, as well as with various crosssectional shapes of its elements. The proposed approach to the calculation of such structures can serve as a basis for parameterization of trusses with other types of web.

About the authors

Vladimir A. Repin

Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletovs

Email: skia2000@mail.ru
ORCID iD: 0000-0001-9107-6606
SPIN-code: 8650-1055

Candidate of Technical Sciences, Associate Professor of the Department of Building Structures, Institute of Аrchitecture, Civil Engineering and Energy

Vladimir, Russia

Anastasia V. Lukina

Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletovs

Author for correspondence.
Email: pismo.33@yandex.ru
ORCID iD: 0000-0001-6065-678X
SPIN-code: 8745-0004

Candidate of Technical Sciences, Associate Professor of the Department of Building Structures, Institute of Аrchitecture, Civil Engineering and Energy

Vladimir, Russia

Artem A. Strekalkin

Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletovs

Email: a.a.strekalkin@gmail.com
ORCID iD: 0000-0002-6338-6241
SPIN-code: 6632-0378

Candidate of Technical Sciences, Associate Professor of the Department of Building Structures, Institute of Аrchitecture, Civil Engineering and Energy

Vladimir, Russia

References

  1. Garifullin M.R., Naumova E.A., Zhuvak O.V., Barabash A.V. Surrogate modeling in construction. Construction of unique buildings and structures. 2016;2(41):118-132. (In Russ.) EDN VPWHRR
  2. Chibrikin D.A., Lukin M.V., Lukina A.V., Tyurikova T.V., Roshchina S.I. Numerical investigation of the stressstrain state of a modified wooden beam. Izvestia of higher educational institutions. Forest Journal. 2022;3(387):167-178. (In Russ.) https://doi.org/10.37482/0536-1036-2022-3-167-178
  3. Schulze B., Millar C. Graphic statics and symmetry. International Journal of Solidsand Structures. 2023, 112492. http://doi.org/10.1016/j.ijsolstr.2023.112492
  4. Markou A.A., Ruan G. Graphic statics: projective funicular polygon. Structures. 2022;41:1390-1396. http://doi.org/10.1016/j.istruc.2022.05.049
  5. Lu Y., Hablicsek M., Akbarzadeh M. Algebraic 3D Graphic Statics with Edge and Vertex Constraints: AComprehensive Approach to Extend the Solution Space for Polyhedral Form-Finding. Computer-Aided Design. 2024;166:103620. http://doi.org/10.1016/j.cad.2023.103620
  6. Radhi A., Iacobellis V., Behdinan K. Manipulation of topologically optimized structures using graphic statics.Materialsand Design. 2021;198:109286. http://doi.org/10.1016/j.matdes. 2020.109286
  7. Sergeev M., Rimshin V., Lukin M., Zdralovic N. Multi-span composite beam. IOP Conference Series: Materials Science and Engineering. 2020;896:012058. https://doi.org/10.1088/1757-899X/896/1/012058
  8. Xu Z., Cui Y., Li B. Truss Structure Optimization Design Based on FE-PSO-SQP Algorithm. In: Kountchev R., Mironov R., Nakamatsu K. (eds). New Approaches for Multidimensional Signal Processing. NAME SP2022. Smart Innovation, Systems and Technologies. Singapore: Springer; 2022;332:151-158. https://doi.org/10.1007/978-981-19-7842-5_14
  9. Zhidkov K.E., Zverev V.V., Kapyrin N.V. Experimental field studies of wooden trusses on metal toothed plates. Construction mechanics and structures. 2021;4(31):90-98. (In Russ.) https://doi.org/10.36622/VSTU.2021.31.4.008
  10. Larsen S.D., Sigmund O., Groen J. Optimal truss and frame design from projected homogenization-basedtopology optimization. Structural and Multidisciplinary Optimization. 2018;57(4):1461-1474. https://doi.org/10.1007/s00158-018-1948-9
  11. Lukin M.V., Chibrikin D.A., Roshchina S.I. Numerical studies of modified composite beams taking into accountthe physical nonlinearity of wood. News of higher educational institutions. Construction. 2023;5(773):5-19. (In Russ.) https://doi.org /10.32683/0536-1052-2023-773-5-5-19
  12. Cai S., Zhang H., Zhang W. An integrated design approach for simultaneous shape and topology optimization ofshell structures. Computer Methods in Applied Mechanics and Engineering. 2023;415:116218. https://doi.org/10.1016/j.cma.2023.116218
  13. Khokhlov A.V. Properties of a family of constant-velocity loading curves generated by a nonlinear Maxwell-typeviscoelastic plasticity model. Mechanical engineering and engineering education. 2017;1(50):57-71. EDN YLIVPZ
  14. Buzurukov Zh.I., Segaev I.N. Farms. Pridneprovsky scientific bulletin. 2019;5(5):12-15. (In Russ.) EDN DNWNVJ
  15. Massafra A., Prati D., Predari G., Gulli R. Wooden truss analysis, preservation strategies, and digital documentation through parametric 3D modeling and HBIM workflow. Sustainability. 2020;12(12):4975. https://doi.org/10.3390/su12124975
  16. Repin V.A., Lukina A.V., Usov A.S. Rational constructive solutions of triangular farms. Construction mechanics of engineering structures and structures. 2023;19(2):199-209. (In Russ.) http://doi.org/10.22363/1815-5235-2023192-199-209
  17. Marutyan A.S. Steel lattice structures made of square pipes with upper belts reinforced with channels, and theircalculation. Construction mechanics and calculation of structures. 2015;5(262):62-69. (In Russ.) EDN UIXKZX
  18. Khudyakov V.A., Pastushkov V.G. Designing farms using main voltage lines. Transport. Transport facilities. Ecology. 2015;1:131-147. EDN TXOYRR
  19. Bolhassani M., Akbarzadeh M., Mahnia M., Taherian R. On structural behavior of a funicular concrete polyhedralframe designed by 3D graphic statics. Structures. 2018;(14):56-68. https://doi.org/10.1016/j.istruc.2018.02.002
  20. Kholodar B.G. Determination of the stress-strain state of a farm using the Maxwell - Cremona diagram. Bulletin of the Brest State Technical University. Construction and architecture. 2016;1(97):39-42. (In Russ.) EDN YWUOCL
  21. Shishov I.I., Lisyatnikov M.S., Roshchina S.I., Lukina A.V. Covering of a single-storey industrial building withwide beams of box-shaped cross-section of stepwise variable height. Bulletin of the South Ural State University. Series: Construction and Architecture. 2021;21(1):22-29. (In Russ.) https://doi.org/10.14529/build210103
  22. van Sosin B., Rodin D., Sliusarenko H., Bartoň M., Elber G. The Construction of Conforming-to-shape Truss Lattice Structures via 3D Sphere Packing. CAD Computer-Aided Design. 2021;132:102962. https://doi.org/10.1016/j.cad.2020.102962

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».