Method of computational models of resistance for reinforced concrete

Cover Page

Cite item

Full Text

Abstract

Based on a comprehensive analysis of the experimental studies from the standpoint of their convergence with the theoretical solutions, the computational models of resistance (CMR) of reinforced concrete are proposed. These models include CMR1 - modeling of normal cracks, CMR2 - modeling of inclined cracks, CMR3 - modeling of diagonal cracks, CMR4 - modeling of intersecting cracks in the wall, CMR4* - modeling of cracks in a flat slab, and CMR5 - modeling of spatial cracks in torsion with bending, CMR5* - modeling of spatial cracks in bending with transverse force. Also, a hierarchy of computational models of the second and third levels is proposed. The distribution of intensity of working reinforcement along the cross-section of the calculated element was obtained in an analytical form by creating closed equations of blocks, corresponding to the blocks of the reinforced concrete element under the condition of equality to zero of partial derivatives of the Lagrange function to determine the maximum crack opening width. It is considered the effect proposed by the author on the additional deformation impact of the reaction “concrete - reinforcement” from the discontinuity of concrete during the formation of the crack by means of a special model of the two-cantilever element of fracture mechanics. Hypotheses about the distribution of linear and angular deformations during cross-section with account of gradients of deformations caused by formation of cracks were formulated for a complex-stressed element subjected to torsion with bending. Crack opening is defined as mutual displacements of reinforcement and concrete, taking into account deformation. The consolidation of substructures in the building system is performed by the method of initial parameters.

About the authors

Vladimir I. Kolchunov

National Research Moscow State University of Civil Engineering; Scientific and Research Institute of Construction Physics of the Russian Academy of Architecture and Construction Sciences

Author for correspondence.
Email: vlik52@mail.ru
ORCID iD: 0000-0001-5075-1134

Doctor of Technical Sciences, Professor, corresponding member of the RAACS, Department of Engineering Graphics and Computer Modeling, National Research Moscow State University of Civil Engineering; chief researcher, Scientific and Research Institute of Construction Physics, Russian Academy of Architecture and Construction Sciences

Moscow, Russian Federation

References

  1. Travush V.I., Karpenko N.I., Kolchunov V.I., Kaprielov S.S., Demyanov A.I., Konorev A.V. The results of experimental studies of structures square and box sections in torsion with bending. Building and Reconstruction. 2018;(6):32-43. (In Russ.) Khaldoun R. Combined torsion and bending in reinforced and prestressed concrete beams using simpli ed method for combined stress-resultants. ACI Structural Journal. 2007;104(4):402-411.
  2. Demyanov A.I., Salnikov A.S., Kolchunov Vl.I. Experimental studies of reinforced concrete structures during torsion with bending and analysis of their results. Building and Reconstruction. 2017;(4):17-26. (In Russ.) Available from: https://construction.elpub.ru/jour/article/view/46/46 (accessed: 25.02.2023). Thomas A., Hameed A.S. An experimental study on combined flexural and torsional behaviour of RC beams. International Research Journal of Engineering and Technology. 2017;4(5):1367-1370.
  3. Kim C., Kim S., Kim K.-H., Shin D., Haroon M., Lee J.-Y. Torsional behavior of reinforced concrete beams with high-strength steel bars. Structural Journal. 2019;116:251-233.
  4. Kandekar S.B., Talikoti R.S. Study of torsional behavior of reinforced concrete beams strengthened with aramid fiber strips. International Journal of Advanced Structural Engineering. 2018;10:465-474. http://doi.org/10.1007/s40091-018-0208-y
  5. Křístek V., Průša J., Vítek J.L. Torsion of reinforced concrete structural members. Solid State Phenomena. 2018;272:178-184. http://doi.org/10.4028/www.scientific.net/SSP.272.178
  6. Santhakumar R., Dhanaraj R., Chandrasekaran E. Behaviour of retrofitted reinforced concrete beams under combined bending and torsion: a numerical study. Electronic Journal of Structural Engineering. 2007;7:1-7. https://doi.org/10.56748/ejse.769
  7. Kalkan I., Kartal S. Torsional rigidities of reinforced concrete beams subjected to elastic lateral torsional buckling. International Journal of Civil and Environmental Engineering. 2017;11(7):969-972. Available from: https://core.ac.uk/download/pdf/144729796.pdf (accessed: 12.02.2023).
  8. Kolchunov Vl., Demyanov A., Protchenko M. The new hypothesis angular deformation and filling of diagrams in bending with torsion in reinforced concrete structures. Journal of Applied Engineering Science. 2021;19(4):972-979. http://doi.org/10.5937/jaes0-32660
  9. Iakovenko I., Kolchunov Vl. The development of fracture mechanics hypotheses applicable to the calculation of reinforced concrete structures for the second group of limit states. Journal of Applied Engineering Science. 2017;15(455):366-375. http://doi.org/10.5937/jaes15-14662
  10. Demyanov A., Kolchunov Vl. The dynamic loading in longitudinal and transverse reinforcement at instant emergence of the spatial сrack in reinforced concrete element under the action of a torsion with bending. Journal of Applied Engineering Science. 2017;15(3):377-382. http://doi.org/10.5937/jaes15-14663
  11. Bernardo L. Modeling the full behavior of reinforced concrete flanged beams under torsion. Applied Sciences. 2019;9(13):2750. http://doi.org/10.3390/app9132730
  12. Nahvi H., Jabbari M. Crack detection in beams using experimental modal data and finite element model. International Journal of Mechanical Sciences. 2005;47:1477-1497. https://doi.org/10.1016/j.ijmecsci.2005.06.008
  13. Jariwalaa V.H., Patel P.V., Purohit S.P. Strengthening of RC beams subjected to combined torsion and bending with GFRP composites. Procedia Engineering. 2013;51:282-289. https://doi.org/10.1016/j.proeng.2013.01.038
  14. Tsai H.-C., Liao M.-C. Modeling Torsional strength of reinforced concrete beams using genetic programming polynomials with building codes. KSCE Journal of Civil Engineering. 2019;23:3464-3475. http://doi.org/10.1007/s12205-019-1292-7
  15. Karpyuk V.M., Kostyuk A.I., Semina Y.A. General case of nonlinear deformation-strength model of reinforced concrete structures. Strength of Materials. 2018;50:453-454. http://doi.org/10.1007/s11223-018-9990-9
  16. Vítek J.L., Boháček L., Průša J., Křístek V. Torsion of rectangular concrete sections. ACI Symposium Publication. 2020;344:111-130.
  17. Lin W. Experimental investigation on composite beams under combined negative bending and torsional moments. Advances in Structural Engineering. 2020;24:1456-1465. http://doi.org/10.1177/1369433220981660
  18. Veryuzhsky Yu.V., Golyshev A.B., Kolchunov Vl.I., Klyueva N.V., Lisitsin B.M., Mashkov I.L., Yakovenko I.A. Reference manual on structural mechanics (vol. II). Moscow: ASV Publishing House; 2014. (In Russ.)
  19. Bondarenko V.M., Kolchunov V.I. Computational models of the strength resistance of reinforced concrete. Moscow: ASV Publishing House; 2004. (In Russ.)
  20. Golyshev A. B., Kolchunov V.I. Resistance of reinforced concrete. Kyiv: Osnova Publ.; 2009. (In Russ.)
  21. Golyshev A.B., Kolchunov Vl.I., Yakovenko I.A. Resistance of reinforced concrete structures, buildings and structures erected in difficult engineering and geological conditions. Kyiv: Talkom Publ.; 2015. (In Russ.)
  22. Kolchunov V.I., Demyanov A.I., Protchenko M.V. Moments in reinforced concrete structures under bending with torsion. Building and Reconstruction. 2021;(3):27-46. (In Russ.) http://doi.org/10.33979/2073-7416-2021-95-3-27-46
  23. Kornouhov N.V. Selected works on structural mechanics. Kyiv: Academy of Sciences of the Ukrainian SSR; 1963. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».