Experimental-Theoretical Method for Assessing the Stiffness and Adhesion of the Coating on a Spherical Substrate

封面

如何引用文章

全文:

详细

Known methods and approaches are ineffective or not applicable at all in the study of mechanical characteristics and adhesion of coatings of complex structure, initially formed on non-planar surfaces. A device has been developed that includes fragments of spherical substrates with rings for mounting along the contour, a pressure source of the working medium with a pressure gauge, a line with a valve for supplying the working medium, a measuring complex and a line for etching the working medium. In a fragment of a spherical substrate there is a small diameter hole, in the area of which a cover is formed according to a given technology. The working medium is fed through a small hole in the tray. A segment of the coating detached from the substrate forms a dome in the form of an ellipsoid fragment. A numerical model of deformation of a coating fragment in the form of a spherical segment with a complex contour is being developed using well-known software complexes. At each step of loading by the “targeting” method, varying the modulus of elasticity and the Poisson’s ratio, we approach the parameters of the experimental dome and determine the actual mechanical and stiffness properties of the coating under study. We calculate the normal separation forces through the radial forces determined by the current numerical model, and then determine the coupling stresses. The developed experimental-theoretical method is an effective tool for evaluating the mechanical properties and stiffness of coatings of complex structure, as well as the adhesion of the coating to a spherical substrate.

作者简介

Samat Yakupov

Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences»

编辑信件的主要联系方式.
Email: tamas_86@mail.ru
ORCID iD: 0000-0003-0047-3679

PhD in Technical Sciences, senior researcher

Kazan, Russian Federation

Gabdrauf Gumarov

Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences»; E.K. Zavoisky Physical-Technical Institute

Email: ifoggg@gmail.com
ORCID iD: 0000-0001-6803-2330

Candidate of Physical and Mathematical Sciences, Head of the Laboratory of Radiation Chemistry and Radiobiology, E.K. Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences; Senior Researcher, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Institute of Mechanics and Engineering

Kazan, Russian Federation

Nukh Yakupov

Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences»

Email: yzsrr@mail.ru
ORCID iD: 0000-0001-8248-1589

Dr. Sci. (Eng.), leading researcher

Kazan, Russian Federation

参考

  1. Dry C. Procedures developed for self-repair of polymeric matrix composite materials. Composite Structures. 1996;35(3):263-269. https://doi.org/10.1016/0263-8223(96)00033-5
  2. Montemor M.F. Functional and smart coatings for corrosion protection: A review of recent advances. Surface and Coatings Technology. 2014;258:17-37. https://doi.org/10.1016/j.surfcoat.2014.06.031
  3. Yakupov S.N., Yakupov N.M. Research of mechanical characteristics thin coating. Scientific Technical Conference on Low Temperature Plasma during the Deposition of Functional Coatings 5-8 November 2018, Kazan University, Kazan, Russian Federation. Journal of Physics: Conference Series. 2019;1328:012103. https://doi.org/10.1088/1742-6596/1328/1/012103
  4. Sripada J.V.S.N., Saha D.C., Saha G.C., Jahed H. Bonding mechanism and mi-crostructural evolution in mechanicallyalloyed nanodiamond-reinforced Al6061 composite particle deposits in cold spray. Surface and Coatings Technology. 2023;466:129611. https://doi.org/10.1016/j.surfcoat.2023.129611
  5. Bochenek K., Węglewski W., Morgiel J., Basista M. Influence of rhenium addition on microstructure, mechanical properties and oxidation resistance of NiAl obtained by powder metallurgy. Materials Science and Engineering: A. September 2018;735:121-130. https://doi.org/10.1016/j.msea.2018.08.032
  6. Liu S., Wu H., Xieetal X. Tribological properties of cold-sprayed 7075Al coatings reinforced with hybrid nano- TiB2/micro-SiC particles. Surface and Coatings Technology. 2023;458:129323. https://doi.org/10.1016/j.surfcoat.2023.129323
  7. Maurya S.S., Pandey K.K., Sharma S., Kumari S., Mirche K.K., Kumar D., Pandey S.M., Keshri A.K. Microstructural, mechanical and tribological behavior of nanodiamonds reinforced plasma sprayed nickel-aluminum coating. Diamond and Related Materials. 2023;133:109714. https://doi.org/10.1016/j.diamond.2023.109714
  8. Awotunde M.A., Olubambi P.A., Chen D. Compressive deformation behaviour and toughening mechanisms of spark plasma sintered NiAl-CNT composites. Ceramics International. 2022;48(11):16072-16084. https://doi.org/10.1016/j.ceramint.2022.02.153
  9. Ahmad S., Gupta A.P., Sharmin E., Alam M., Pandey S.K. Synthesis, characterization and development of high performance siloxane-modified epoxy paints. Progress in Organic Coatings. 2005;54(3):248-255. https://doi.org/10.1016/j.porgcoat.2005.06.013
  10. Qian M., Soutar A.M., Tan X.H., Zeng X.T., Wijesinghe S.L. Two-part epoxy-siloxane hybrid corrosion protection coatings for carbon steel. Thin Solid Films. 2009;517(17):5237-5242. https://doi.org/10.1016/j.tsf.2009.03.114
  11. Xue D., Van Ooij W.J. Corrosion performance improvement of hot-dipped galvanized (HDG) steels by electrodeposition of epoxy-resin-ester modified bis-[tri-ethoxy-silyl] ethane (BTSE) coatings. Progress in Organic Coatings. 2013; 76(7-8):1095-1102. https://doi.org/10.1016/j.porgcoat.2013.03.004
  12. Diaz I., Chico B., de la Fuente D., Simancas J., Vega J.M., Morcillo M. Corrosion resistance of new epoxysiloxane hybrid coatings. A laboratory study. Progress in Organic Coatings. 2010;69(3):278-286. https://doi.org/10.1016/j.porgcoat.2010.06.007
  13. Holness R.J., Williams G., Worsley D.A., McMurray H.N. Polyaniline Inhibition of Corrosion-Driven Organic Coating Cathodic Delamination on Iron. Journal of The Electrochemical Society. 2005;152(2):B73. https://doi.org/10.1149/1.1850857
  14. Hosseini M.G., Jafari M., Najjar R. Effect of polyaniline-montmorillonite nanocomposite powders addition on corrosion performance of epoxy coatings on Al 5000. Surface and Coatings Technology. 2011;206(2-3):280-286. https://doi.org/10.1016/j.surfcoat.2011.07.012
  15. Zhang X., He Q., Gu H., Colorado H.A., Wei S., Guo Z. Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines. ACS Application. Material. Interfaces. 2013;5:898-910. https://doi.org/10.1021/am302563w
  16. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992;7:1564-1583. https://doi.org/10.1557/ JMR.1992.1564
  17. Yanovsky Yu.G., Nikitina E.A., Nikitin S.M., Karnet Yu.N. Quantum mechanical studies of the mechanism of deformation of carbon nanotubes. Mechanics of Composite Materials and Structures. 2009;15(3):345-368. (In Russ.)
  18. Galimov N.K., Yakupov N.M., Yakupov S.N. Experimental-Theoretical Method for Determining Mechanical Characteristics of Spherical Films and Membranes of Complex Structure. Mechanics of Solids. 2011;3:380-386. https://doi.org/10.3103/S0025654411030058
  19. Taplin J. (ed.) Fracture mechanics. The destruction of the materials. Congressional reports, Waterloo. Canada, June 19-24, 1977. Moscow: Mir Publ.; 1979. (In Russ.)
  20. Yakupov S.N., Gubaidullin R.I. Rigidity, adhesion and delamination of the coating in the “substrate - coating” system. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(3):204-214. (In Russ.) http://doi.org/10.22363/1815-5235-2022-18-3-204-214
  21. Yakupov S.N., Kiyamov H.G., Yakupov N.M. Mukhamedova I.Z. A new variant of the fem for evaluation the strenght of structures of complex geometry with heterogeneous material structure. Case Studies in Construction Materials. 2023;19:e02360. https://doi.org/10.1016/j.cscm.2023.e02360
  22. Yakupov S.N., Kiyamov H.G., Yakupov N.M. Modeling a synthesized element of complex geometry based upon three-dimensional and two-dimensional finite elements. Lobachevskii Journal of Mathematics. 2021;42(9):2263-2271. https://doi.org/10.1134/S1995080221090316

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».