Effect of using 3D-printed shell structure for reinforcement of ultra-high-performance concrete

Cover Page

Cite item

Full Text

Abstract

This study aims to investigate the effect of 3D-printed polymer shell reinforcemen ton ultra-high-performance concrete. The mechanical properties of ultra-high-performance polymer reinforced concrete have been investigated. At first, the 3D-printed shell reinforcements were designed using 3D Max and Rhino 6 software. Then, each was fabricated through the fused deposition modeling method and positioned into the cubic, cylindrical, and prismatic molds. In the next step, the prepared Ultra-High-Performance Concrete mixture was poured into the molds, and the samples were cured for 28 days. Finally, the compressive, tensile, and flexural strength tests were carried out on the samples. The results indicated that the compressive, tensile, and flexural strengths of reinforced samples were lower than that of the unreinforced ones, respectively. Although including 3D-printed reinforcement decreased the mechanical properties of the Ultra-High-Performance Concrete samples, it changed the fracture mechanism of concrete from brittle to ductile.

About the authors

Mohammad Hematibahar

Moscow State University of Civil Engineering

Author for correspondence.
Email: eng.m.hematibahar1994@gmail.com
ORCID iD: 0000-0002-0090-5745

Ph.D. students

Moscow, Russian Federation

Nikolai I. Vatin

Peter the Great St. Petersburg Polytechnic University; RUDN University

Email: vatin@mail.ru
ORCID iD: 0000-0002-1196-8004

D.Sc. (Eng.), Professor of the Higher School of Industrial Civil and Road Construction, Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russian Federation; Moscow, Russian Federation

Taheri Jafari Hamid

Ramsar Branch, Islamic Azad University

Email: hamidtahery2002@yahoo.co.uk
ORCID iD: 0009-0009-5816-3009

Ph.D., Researcher at Department of Civil Engineering

Ramsar, Iran

Tesfaldet H. Gebre

RUDN University

Email: tesfaldethg@gmail.com
ORCID iD: 0000-0002-7168-5786

Ph.D. (Eng.), Researcher at the Department of Civil Engineering, Academy of Engineering

Moscow, Russian Federation

References

  1. Xu Y., Šavija B. Development of strain hardening cementitious composite (SHCC) reinforced with 3D printed polymeric reinforcement: Mechanical properties. Composites Part B: Engineering. 2019;(174):107011. https://doi.org/10.1016/j.compositesb.2019.107011
  2. Jaimes W., Maroufi S. Sustainability in steel making. Current opinion in green and sustainable chemistry. 2020; (24):42-47. https://doi.org/10.1016/j.cogsc.2020.01.002
  3. Hasanzadeh A., Vatin N.I. Hematibahar M., Kharun M. Shooshpasha I. Prediction of the mechanical properties of basalt fiber reinforced high-performance concrete using machine learning techniques. Materials. 2022;(15):7165. https://doi.org/10.3390/ma15207165
  4. Ji Y., Xu W., Sun Y., Ma Y., He Q., Xing Z. Grey correlation analysis of the durability of steel fiber-reinforced concrete under environmental action. Materials. 2022;(15):4748. https://doi.org/10.3390/ma15144748
  5. Mu Y., Xia H., Yan Y., Wang Z., Guo R. Fracture behavior of basalt fiber-reinforced airport pavement concrete at different strain rates. Materials. 2022;(15):7379. https://doi.org/10.3390/ma15207379
  6. Mohtasham Moein M., Saradar A., Rahmati K., Shirkouh A.H. Sadrinejad I., Aramali V., Karakouzian, M. Investigation of impact resistance of high-strength portland cement concrete containing steel fibers. Materials. 2022;(15): 7157. https://doi.org/10.3390/ma15207157
  7. Eskandarinia M., Esmailzade M., Hojatkashani A., Rahmani A., Jahandari S. Optimized alkali-activated slag-based concrete reinforced with recycled tire steel fiber. Materials 2022(15);6623: https://doi.org/10.3390/ma15196623
  8. Hematibahar M., Vatin N.I., Alaraza H.A.A., Khalilavi A., Kharun M. The prediction of compressive strength and compressive stress-strain of basalt fiber reinforced high-performance concrete using classical programming and logistic map algorithm. Materials 2022;19:6975. https://doi.org/10.3390/ma15196975
  9. Hasanzadeh A., Shooshpasha I. A study on the combined effects of silica fume particles and polyethylene terephthalate fibres on the mechanical and microstructural characteristics of cemented sand. International Journal of Geosynthetics and Ground. 2021;(7):98. https://doi.org/10.1007/s40891-021-00340-4
  10. Hasanzadeh A., Shooshpasha I. Influences of silica fume particles and polyethylene terephthalate fibers on the mechanical characteristics of cement-treated sandy soil using ultrasonic pulse velocity. Bulletin of Engineering Geology and the Environment. 2022;(81)14. https://doi.org/10.1007/s10064-021-02494-x
  11. Stähli P., Van Mier J.G. Manufacturing fibre anisotropy and fracture of hybrid fibre concrete. Engineering Fracture Mechanics. 2007;(74):223-242. https://doi.org/10.1016/j.engfracmech.2006.01.028
  12. Kim T.G., Shin G.Y., Shim D.S. Study on the interfacial characteristics and crack propagation of 630 stainless steel fabricated by hybrid additive manufacturing (additional DED building on L-PBFed substrate). Materials Science and Engineering. 2022;(835):142657. https://doi.org/10.1016/j.msea.2022.142657
  13. Ning X., Liu T., Wu C., Wang C. 3D printing in construction: current status implementation hindrances and development agenda. Advances in Civil Engineering. 2021;(2):6665333. https://doi.org/10.1155/2021/6665333
  14. Tan W., Wang P. Experimental study on seepage properties of jointed rock-like samples based on 3D printing techniques. Advances in Civil Engineering. 2020:9403968. https://doi.org/10.1155/2020/9403968
  15. Boparai K.S., Singh R., Singh H. Development of rapid tooling using fused deposition modeling: a review. Rapid Prototyping Journal. 2016;(22):281-299. https://doi.org/10.1108/RPJ-04-2014-0048
  16. Mansouri A., Binali A., Aljawi A., Alhammadi A., Almir K., Alnuaimi E., Alyousuf H., Rodriguez-Ubinas E. Thermal modeling of the convective heat transfer in the large air cavities of the 3D concrete printed walls. Cogent Engineering. 2022;9(1):2130203. https://doi.org/10.1080/23311916.2022.2130203
  17. Qin S., Cao S., Yilmaz E., Li J. Influence of types and shapes of 3D printed polymeric lattice on ductility performance of cementitious backfill composites. Construction and Building Materials. 2021;307:124973. https://doi.org/ 10.1016/j.conbuildmat.2021.124973
  18. Farina I., Fabbrocino F., Carpentieri G., Modano M., Amendola A., Goodall R., Feo L., Fraternali F. On the reinforcement of cement mortars through 3D printed polymeric and metallic fibers. Composites Part B: Engineering. 2016;(90): 76-85. http://doi.org/10.1016/j.compositesb.2015.12.006
  19. Meurer M., Classen M., Mechanical properties of hardened 3D printed concretes and mortars-development of a consistent experimental characterization strategy. Materials. 2021;14(4):752. https://doi.org/10.3390/ma14040752
  20. Hambach M., Volkmer D. Properties of 3D-printed fiber-reinforced portland cement paste. Cement and Concrete Composites. 2017;79:62-70. https://doi.org/10.1016/j.cemconcomp.2017.02.001
  21. Hambach M., Möller H., Neumann T., Volkmer D. Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (>100MPa). Cement and Concrete Research. 2016;89:80-86. https://doi.org/10.1016/ j.cemconres.2016.08.011
  22. Medicis C., Gonzalez S., Alvarado Y.A., Vacca H.A., Mondragon I.F., Garcia R., Hernandez G. Mechanical performance of commercially available premix UHPC-based 3D printable concrete. Materials. 2022;15:6326. https://doi. org/10.3390/ma15186326
  23. Rehman A.U., Kim J.H. 3D Concrete printing: A systematic review of rheology mix designs mechanical microstructural and durability characteristics. Materials. 2021;(14):3800. https://doi.org/10.3390/ma14143800
  24. Pham L., Tran P. Sanjayan J. Steel fibres reinforced 3D printed concrete: influence of fibre sizes on mechanical performance. Construction and Building Materials. 2020;(250):118785. https://doi.org/10.1016/j.conbuildmat.2020.118785
  25. Arunothayan A.R., Nematollahi B., Ranade R., HauBong S., Sanjayan J.G., Khayat K.H. Fiber orientation effects on ultra-high performance concrete formed by 3D printing. Cement and Concrete Research. 2021;(143);106384. https://doi. org/10.1016/j.cemconres.2021.106384
  26. Nam Y.J., Hwang Y.K., Park J.W., Lim Y.M. Feasibility study to control fiber distribution for enhancement of composite properties via three-dimensional printing. Mechanics of Advanced Materials and Structures. 2019;(26):465-469. https://doi.org/10.1080/15376494.2018.1432809
  27. Rosewitz J.A., Choshali H.A., Rahbar N. Bioinspired design of architected cement-polymer composites. Cement and Concrete Composites. 2019;(96):252-265. https://doi.org/10.1016/j.cemconcomp.2018.12.010
  28. Katzer J., Szatkiewicz T. Effect of 3D printed spatial reinforcement on flexural characteristics of conventional mortar. Materials. 2020;(13):3133. https://doi.org/10.3390/ma13143133
  29. Salazar B., Aghdasi P., Williams I.D., Ostertag C.P., Taylor H.K. Polymer lattice-reinforcement for enhancing ductility of concrete. Materials & Design. 2020;(196):109184. https://doi.org/10.1016/j.matdes.2020.109184
  30. Liu Y., Zwingmann B., Schlaich M. Carbon fiber reinforced polymer for cable structures-a review. Polymers. 2015;(7):2078-2099. https://doi.org/10.3390/polym7101501
  31. Wittbrodt B., Pearce J.M. The Effects of PLA Color on Material Properties of 3-D Printed Components. Additive Manufacturing. 2015;(8):110-116. http://doi.org/10.1016/j.addma.2015.09.006
  32. Hasanzadeh A., Shooshpasha I. Effects of silica fume on cemented sand using ultrasonic pulse velocity. Journal of Adhesion Science and Technology. 2019;(33):1184-1200. https://doi.org/10.1080/01694243.2019.1582890
  33. Hasanzadeh A., Shooshpasha I. Influence of silica fume on the geotechnical characteristics of cemented sand. Geotechnical and Geological Engineering. 2020;(38):6295-6312. https://doi.org/10.1007/s10706-020-01436-w
  34. Chen Y., Matalkah F., Soroushian P.,Weerasiri R., Balachandra A. Optimization of ultra-high performance concrete quantification of characteristic features. Cogent Engineering. 2019;(6):1558696. https://doi.org/ 10.1080/23311916.2018.1558696
  35. Shihada S., Arafa M. Effects of silica fume ultrafine and mixing sequences on properties of ultra high performance concrete. Asian Journal of Materials Science. 2010;(2):137-146. http://doi.org/10.3923/ajmskr.2010.137.146
  36. Zhang H., Cao C., Yilmaz E. Influence of 3D-printed polymer structures on dynamic splitting and crack propagation behavior of cementitious tailings backfill. Construction and Building Materials. 2022;(343):128137. http://doi.org/10.1016/j.conbuildmat.2022.128137
  37. Mechtcherine V., Grafe J., Nerella V.N., Spaniol E., Hertel M., Füssel U. 3D-printed steel reinforcement for digital concrete construction - Manufacture mechanical properties and bond behaviour. Construction and Building Materials. 2018;(179):125-137. https://doi.org/10.1016/j.conbuildmat.2018.05.202
  38. Le T.T., Austin S.A., Lim S., Buswell R.A., Law R., Gibb A.G.F., Thorpe T. Hardened properties of high-performance printing concrete. Cement and Concrete Research. 2012;(42):558-566. https://doi.org/10.1016/j.cemconres.2011. 12.003
  39. Xu Y., Zhang H., Gan Y., Šavija B. Cementitious composites reinforced with 3D printed functionally graded polymeric lattice structures: Experiments and modelling. Additive Manufacturing. 2021;(39):101887. https://doi.org/10.1016/j.addma.2021.101887

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».