Оптимизация швеллерных и двутавровых гнутозамкнутых профилей с перфорированными стенками

Обложка

Цитировать

Полный текст

Аннотация

В представленном исследовании продолжается оптимизация швеллерных и двутавровых гнутозамкнутых профилей (ГЗП) с трубчатыми полками и перфорированными стенками из листового проката как равных, так и разных толщин. Такие профили предназначены для легких стальных тонкостенных конструкций (ЛСТК), отличающихся улучшенными технико-экономическими показателями и массовым спросом в промышленно-гражданском строительстве, что подтверждает актуальность их дальнейшей проработки. Цель исследования - показать, что характеристики ЛСТК можно дополнительно улучшить при помощи формообразования профилей, сочетающего в составном сечении прямые и круглые очертания замкнутых и открытых контуров, включая их перфорирование. Посредством опытно-конструкторских проработок, решения оптимизационных задач и вариантного проектирования ГЗП уточнены их расчетные сечения с максимальным запасом прочности на изгиб при минимальной массе. Оригинальность технических решений подтверждена патентной экспертизой. Швеллерный ГЗП обладает экстремальными массой и прочностью при относительной высоте вырезов в стенке 1/1,87 и отношении размеров ширины и высоты 1/4,32. Когда толщина полок в 2 раза больше толщины стенки, прочность и масса двутаврового ГЗП экстремальны при относительной высоте вырезов 1/1,23 и отношении размеров 1/4,17, а когда толщина полок составляет 0,6 толщины стенки, прочность и масса ГЗП экстремальны при высоте вырезов 1/1,73 и отношении размеров 1/5,22. Если толщины полок и стенки равны, то прочность и масса ГЗП экстремальна при высоте вырезов 1/1,46 и отношении размеров 1/3,17.

Об авторах

Александр Суренович Марутян

Пятигорский институт (филиал) Северо-Кавказского федерального университета

Автор, ответственный за переписку.
Email: al_marut@mail.ru
ORCID iD: 0000-0001-5464-5929

кандидат технических наук, доцент, преподаватель, ведущий научный сотрудник

Российская Федерация, 357500, Пятигорск, пр-кт 40 лет Октября, д. 56

Список литературы

  1. Perelmuter A.V. Constructive form number one. Proceeding of the Donbas National Academy of Civil Engineering and Architecture. 2012;(1):27–39. (In Russ.)
  2. Perelmuter A.V. Essays on the history of metal structures. Moscow: SKAD Soft Publ., ASV Publ.; 2015. (In Russ.)
  3. Vedyakov I.I., Konin D.V. On the improvement of domestic grades of I-beam profiles with parallel shelf faces and the development of design standards for modern metal structures. Structural Mechanics and Analysis of Constructions. 2014;(3):50–56. (In Russ.)
  4. Vedyakov I.I., Konin D.V., Eremeev P.G. Development of a new assortment (GOST R) for the production of I-beams with wide shelves. Construction Materials, Equipment, Technologies of the XXI Century. 2017;(3–4):40–43. (In Russ.)
  5. Kuznetcov D.N., Sazykin V.G. Stress-strain state of a steel I-beam in a combined beam. Part 1. News of Higher Edicational Institutions. Construction. 2019;(11):5–16. (In Russ.) http://doi.org/10.32683/0536-1052-2019-731-11-5-16
  6. Kuznetcov D.N., Sazykin V.G. Stress-strain state of a steel I-beam in a combined beam. Part 2. News of Higher Edicational Institutions. Construction. 2019;(12):13–23. (In Russ.) http://doi.org/10.32683/0536-1052-2019-732-12-13-23
  7. Kuznetcov D.N., Sazykin V.G. Stress-strain state of a steel I-beam in a combined beam. Part 3. News of Higher Edicational Institutions. Construction. 2020;(1):18–33. (In Russ.) http://doi.org/10.32683/0536-1052-2020-733-1-18-33
  8. Lyakhovich L.S., Akimov P.A., Tukhfatullin B.A. Assessment of the proximity of design to minimum material capacity solution of problem of optimization of the flange width of I-shaped cross-section rods with allowance for stability constraints or constraints for the value of the national frequency and strength requirements. International Journal for Computational Civil and Structural Engineering. 2020;16(2):71–82. https://doi.org/10.22337/2587-9618-2020-16-2-71-82
  9. Trofimov V.I., Kaminskij A.M. Light metal structures of buildings and structures. Moscow: ASV Publ.; 2002. p. 174–186. (In Russ.)
  10. Pritykin A.I., Lavrova A.S. Stress distribution in perforated beams with round cutouts during transverse bending. Industrial and Civil Construction. 2017;(2):81–85. (In Russ.)
  11. Chandramohana D.L., Kanthasamyb E., Gatheeshgarb P., Poologanathanb K., Fareedh M., Ishqyc M., Suntharalingamb T., Kajaharand T. Shear behaviour and design of doubly symmetric hollow flange beam with web openings. Journal of Constructional Steel Research. 2021;185:106836. https://doi.org/10.1016/J.JCSR.2021.106836
  12. Onosov G.V., Silina N.G. Corrosion resistance of steel thin-sheet galvanized rolled products. Industrial and Civil Construction. 2020;(10):4–8. (In Russ.) https://doi.org/10.33622/0869-7019.2020.10.04-08
  13. Lawson R.M., Basta A. Deflection of C-section beams with circular web openings. Thin-Walled Structures. 2019;134:277–290. https://doi.org/10.1016/j.tws.2018.10.010
  14. Yousefi A.M., Lim J.B.P., Charles G., Clifton G.C. Web crippling design of cold-formed ferritic stainless steel unlipped channels with fastened flanges under end-two-flange loading condition. Journal of Constructional Steel Research. 2019;152:12–28.
  15. Degtyareva N. Parametric study and proposed design equation for cold-formed steel channels with slotted webs subjected to web crippling under interior two flange load case. Construction of Unique Buildings and Structures. 2021;97:9701.
  16. Kashevarova G.G., Kosyh P.A. The comparative analysis of the results of real and numerical experiments for defining the ultimate bearing capacity of light gauge steel studs “Atlant.” International Journal for Computational Civil and Structural Engineering. 2018;14(3):50–58. (In Russ.) http://doi.org/10.22337/2587-9618-2018-14-3-50-58
  17. Korsun N.D., Prostakishina D.A. Application of thin-walled structures for energy-savings in steel structure construction. Magazine of Civile Engineering. 2019;(5):83–89. (In Russ.) http://doi.org/10.23968/1999-5571-2019-16-5-83-89
  18. Sovetnikov D.O., Videnkov N.V., Trubina D.A. Light gauge steel framing in construction of multi-storey buildings. Construction of Unique Buildings and Structures. 2015;(3(30)):152–165. (In Russ.) http://doi.org/10.18720/CUBS.30.11
  19. Reshetnikov A.A., Kornet V.Yu., Leonova D.A. Analysis of the economic advantage of overlapping from LSTK before wooden. Engineering Messenger of the Don. 2018;(3). (In Russ.) Available from: ivdon.ru/ru/magazine/archive/n31y2018/5125 (accessed: 15.07.2021).
  20. Rybakov V.A., Maslak T.V., Fedotova K.A., Smirnov A.V., Ananeva I.A. Reconstruction of pitched roofs using steel thin-walled structures. Construction of Unique Buildings and Structures. 2017;12(63):20–48. (In Russ.)
  21. Nefedov G.V. Construction of medium-storey residential buildings on frames of light steel thin-walled structures. Industrial and Civil Engineering. 2020;(7):10–15. (In Russ.) http://doi.org/10.33622/0869-7019.2020.07.10-15
  22. Gravit M.V., Dmitriev I.I. Thin-walled compressed steel constructions under fire load. Magazine of Civil Engineering. 2021;(105(5)):10514. http://doi.org/10.34910/MCE.105.14
  23. Marutyan A.S. Curved closed profiles and calculation of their optimal parameters. Structural Mechanics of Engineering Construction and Buildings. 2019;15(1):33–43. (In Russ.) http://doi.org/10.22363-1815-5235-2019-15-1-33-43
  24. Marutyan A.S. Comparative calculation of optimal parameters of channel bent and bent closed profiles. Structural Mechanics of Engineering Construction and Buildings. 2019;15(6):415–432. (In Russ.) http://doi.org/10.22363-1815-5235-2019-15-6-415-432
  25. Marutyan A.S. I-shaped bent closed profiles with tubular shelves and calculation of the optimal layout of their composite sections. Structural Mechanics of Engineering Construction and Buildings. 2020;16(5):334–350. (In Russ.) http://doi.org/10.22363/1815-5235-2020-16-5-334-350
  26. Marutyan A.S. Optimization of channels and I-shaped bended closed profiles with tubular shelves from sheets of different thicknesses. Structural Mechanics of Engineering Construction and Buildings. 2021;17(2):140–164. (In Russ.) http://doi.org/10.22363/1815-5235-2021-17-2-140-164
  27. Belyj G.I. Development of methods for calculating bar elements of steel structures under multi-parameter loading. Bulletin of Civil Engineers. 2020;(3):43–54. (In Russ.) https://doi.org/10.23968/1999-5571-2020-17-3-43-54
  28. Belyj G.I. Analytical-numerical method for calculating the stability of rod elements of lightweight steel structures. Bulletin of Civil Engineers. 2020;(4):39–46. (In Russ.) https://doi.org/10.23968/1999-5571-2020-17-4-39-46
  29. Belyj G.I., Smirnov M.O. Inverse numerical-analytical method for calculation of light steel thin-walled rod elements. Industrial and Civil Engineering. 2021;(3):57–68. (In Russ.) https://doi.org/10.33622/0869-7019.2021.03.57-68
  30. Kosenkov V.V., Shurinov A.V. Refinement of methods for calculating structures from steel thin-walled cold-formed sections. Industrial and Civil Construction. 2020;(10):65–76. (In Russ.) https://doi.org/10.33622/0869-7019.2020.10.65-76
  31. Fan S., Chen M., Li S., Ding Z., Shu G., Zheng B. Stainless steel lipped C-section beams: numerical modelling and development of design rules. Journal of Constructional Steel Research. 2019;(152):29–41.
  32. Ye J., Hajirasouliha I., Becque J., Pilakoutas K. Development of more efficient cold-formed steel channel sections in bending. Thin-Walled Structures. 2016;(101):1–13. http://doi.org/10.1016/J.TWS.2015.12.021
  33. Lawsona R.M., Bastab A. Deflection of C section beams with circular web openings. Thin-Walled Structures. 2019;(134):277–290.
  34. Chen W., Ye J., Zhao Q., Jiang J. Full-scale experiments of gypsum-sheathed cavity-insulated cold formed steel walls under different fire conditions. Journal of Constructional Steel Research. 2020;(164):105809. http://doi.org/10.1016/j.jcsr.2019.105809
  35. Li Z., Li T., Xiao Y. Connections used for cold-formed steel frame shear walls sheathed with engineered bamboo panels. Journal of Constructional Steel Research. 2020;(164):105787.
  36. Galishnikova V.V., Pechorskaya S.A., Karnevich V.V. (prep.) Steel buildings in Europe. Multi-storey steel buildings. Part 2. Main design decisions. Moscow: Aksiom Grafiks Yunion Publ.; 2017. (In Russ.)
  37. Marutyan A.S. Optimization of tubular (bent-welded) structures square (rectangular) profiles and rhombic sections. Structural Mechanics and Analysis of Constructions. 2016;(1(264)):30–38. (In Russ.)
  38. Kashevarova G.G., Kosyh P.A. Determination of equivalent geometric characteristics of Atlant profiles. Vestnik Volzhskogo Regional'nogo Otdeleniya RAASN. 2016;(19):207–214. (In Russ.)
  39. Kaplun Ya.A. Steel structures made of wide-brimmed I-beams and brands (N.P. Melnikov, Transl.). Moscow: Strojizdat Publ.; 1981. p. 10–12. (In Russ.)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».