Параметризация поверхности сложной геометрии
- Авторы: Якупов С.Н.1, Низамова Г.Х.2
-
Учреждения:
- Федеральный исследовательский центр «Казанский научный центр РАН»
- Российский университет дружбы народов
- Выпуск: Том 18, № 5 (2022)
- Страницы: 467-474
- Раздел: Геометрическое моделирование форм оболочек
- URL: https://journals.rcsi.science/1815-5235/article/view/325764
- DOI: https://doi.org/10.22363/1815-5235-2022-18-5-467-474
- ID: 325764
Цитировать
Полный текст
Аннотация
Среди тонкостенных конструкций, в том числе строительных конструкций и сооружений, эффективными по своим жесткостным и прочностным характеристикам являются оболочки сложной геометрии, которые выделяются архитектурной гармоничностью. Для более широкого применения оболочек сложной геометрии необходимо достоверно оценивать их напряженно-деформированное состояние. При этом составной частью расчета является этап параметризации срединной поверхности оболочек сложной геометрии. Различают оболочки сложной геометрии канонической и неканонической формы. Для оболочек неканонической формы срединная поверхность не может быть задана аналитическими формулами. При этом возникают трудности на этапе задания (параметризации) формы срединной поверхности. Задача усложняется, когда у фрагмента оболочки сложный контур и одна или несколько точек поверхности имеют фиксированные координаты. Для строительных конструкций это, например, наличие дополнительных внутренних опор. Представлена информация о сплайновом варианте МКЭ. Отмечены некоторые известные способы параметризации. Рассмотрен подход параметризации минимальной поверхности сложной формы, ограниченной четырьмя криволинейными контурами и заданной (фиксированной) координатой одной внутренней точки поверхности. Описан алгоритм построения пространственной сети, а также определения координат, компонент метрического тензора и символов Кристоффеля, необходимых при решении задач параметризации в сплайновом варианте метода конечных элементов.
Об авторах
Самат Нухович Якупов
Федеральный исследовательский центр «Казанский научный центр РАН»
Автор, ответственный за переписку.
Email: tamas_86@mail.ru
ORCID iD: 0000-0003-0047-3679
кандидат технических наук, старший научный сотрудник, Институт механики и машиностроения
Российская Федерация, 420111, Казань, ул. Лобачевского, д. 2/31Гузяль Хавасовна Низамова
Российский университет дружбы народов
Email: guzelnizamova2009@yandex.ru
ORCID iD: 0000-0002-7193-9125
кандидат технических наук, доцент кафедры машиностроительных технологий, Инженерная академия
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6Список литературы
- Yakupov N.M., Galimov Sh.K., Khismatullin N.I. From stone blocks to thin-walled structures. Kazan: SOS Publ.; 2001. (In Russ.)
- Krivoshapko S.N., Ivanov V.N. Encyclopedia of analytical surfaces. Springer; 2015.
- Aleynikov S.M. The method of boundary elements in contact problems for elastic spatially inhomogeneous bases. Moscow: DIA Publ.; 2000. (In Russ.)
- Alibeigloo A., Nouri V. Static analysis of functionally graded cylindrical shell with piezoelectric layers using differential quadrature method. Composite Structures. 2010;92(8):1775–1785.
- Gurkan I. The effect of using shell and solid models in structural stress analysis. Vibroengineering PROCEDIA. 2019;27:115–120. https://doi.org/10.21595/vp.2019.20977
- Peaters M., Santo G., Degroote J., Van Paepegem W. High-fidelity finite element models of composite wind turbine blades with shell and solid elements. Composite Structures. 2018;200:521–531. https://doi.org/10.1016/j.compstruct.2018.05.091
- Bognet B., Leygue A., Chinesta F. Separated representations of 3D elastic solutions in shell geometries. Advanced Modeling and Simulation in Engineering Sciences. 2014;1:4. https://doi.org/10.1186/2213-7467-1-4
- Cerracchio P., Gherlone M., Di Sciuva M., Tessler A. A novel approach for displacement and stress monitoring of sandwich structures based on the inverse finite element method. Composite Structures. 2015;127:69–76. https://doi.org/10.1016/j.compstruct.2015.02.081
- Gherlone M., Cerracchio P., Mattone M., Di Sciuva M., Tessler A. Shape sensing of 3D frame structures using an inverse finite element method. International Journal of Solids and Structure. 2012;49:3100–3112. https://doi.org/10.1016/j.ijsolstr.2012.06.009
- Kefal A., Tessler A., Oterkus E. An efficient inverse finite element method for shape and stress sensing of laminated composite and sandwich plates and shells. Hampton: NASA Langley Research Center; 2018.
- Magisano D., Liabg K., Garcea G., Leonetti L., Ruess M. An efficient mixed variational reduced order model formulation for nonlinear analyses of elastic shells. International Journal for Numerical Methods in Engineering. 2018;113(4):634–655. https://doi.org/10.1002/nme.5629
- Moazzez K., Googarchin H.S., Sharifi S.M.H. Natural frequency analysis of a cylindrical shell containing a variably oriented surface crack utilizing line-spring model. Thin-Shell Structures. 2018;125:63–75. https://doi.org/10.1016/j.tws.2018.01.009
- Yin T., Lam H.F. Dynamic analysis of finite-length circular cylindrical shells with a circumferential surface crack. Journal of Engineering Mechanics. 2013;139:1419–1434. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000587
- Nemish Yu.N. Three-dimensional boundary value problems of elasticity theory for non-canonical domains. Applied Mechanics. 1980;16(2):3–39. (In Russ.)
- Rekach V.G., Krivoshapko S.N. Calculation of shells of complex geometry. Moscow: RUDN Publ.; 1988. (In Russ.)
- Fung Y.C., Sechler E.E. (eds.) Thin-shell structures. Theory, experiment and design. California Institute of Technology, Prentice Hall; 1974.
- Vachitov M.B., Paymushin V.N., Yakupov N.M. On solution of the plane problem of reinforced panels of variable stiffness. Izvestiya Vysshikh Uchebnykh Zavedenii. Aviatsionnaya Tekhnika. 1978;2:9–16. (In Russ.)
- Yakupov N.M. On one method of calculating shells of complex geometry. Proceedings of the Seminar: Research on the Theory of Shells. 1984;17(II):4–17. (In Russ.)
- Kornishin M.S., Yakupov N.M. Spline variant of the finite element method for calculating shells of complex geometr. Applied Mechanics. 1987;23(3):38–44. (In Russ.)
- Kornishin M.S., Yakupov N.M. To the calculation of shells of complex geometry in cylindrical coordinates based on the spline version of the FEM. Applied Mechanics. 1989;25(8):53–60. (In Russ.)
- Yakupov N.M., Serazutdinov M.N. Calculation of elastic thin-walled structures of complex geometry. Kazan: IMM KSC RAS Publ.; 1993. (In Russ.)
- Yakupov N.M. Applied problems of mechanics of elastic thin-walled structures. Kazan: IMM KNC RAS, 1994. (In Russ.)
- Badriev I.B., Paimushin V.N. Refined models of contact interaction of a thin plate with positioned on both sides deformable foundations. Lobachevskii Journal of Mathematics. 2017;38(5):779–793.
- Yakupov S.N., Nurullin R.G., Yakupov N.M. Parametrization of structural elements of complex geometry. Structural Mechanics of Engineering Constructions and Buildings. 2017;(6):4–9. (In Russ.) https://doi.org/10.22363/1815-5235-2017-6-4-9
- Nizamov H.N., Sidorenko S.N., Yakupov N.M. Forecasting and prevention of corrosion destruction of structures. Moscow: RUDN Publ.; 2006. (In Russ.)
Дополнительные файлы
