Seismic retrofitting of buildings using Building Information Modeling

封面

如何引用文章

全文:

详细

Building Information Modeling (BIM), in the last couple of decades, has emerged as a technology that can be used in combination with different methodologies in the fields of architecture, engineering, and construction industry as a digital model to facilitate the planning and design process, construction and maintenance. Using the tools of BIM, the stakeholders generate the digital models that can help them to identify the problems. A total of 24 conference papers, referenced journal articles, and other academic sources were analyzed based on their relevance and research focus areas. This article provides a review on the integration of building information modeling with different methodologies for seismic retrofitting of both structural and non-structural components of buildings. Pre-seismic and post-seismic applications of Building Information Modeling with the integration of different methodologies have been reviewed overbuilding life cycles with a view of addressing the challenges and recommending the future research perspectives. In the end, by stating the possibilities of integration of BIM tools with different methodologies mainly using Performance-Based Earthquake Engineering as a paradigm which is fully probabilistic, this paper concludes that the implication of the Building Information Modeling with the integration of different methodologies isn’t merely the inclusion of the certain conditions, but also of the numerical integration of all the possible uncertainties.

作者简介

Lami Dereje

Peoples’ Friendship University of Russia (RUDN University); Bule Hora University

编辑信件的主要联系方式.
Email: sdlami@yahoo.com
ORCID iD: 0000-0002-9852-3576

master of the Department of Civil Engineering, Academy of Engineering of the RUDN University, assistant lecturer in the Department of Civil Engineering, Faculty of Engineering of the BHU

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; O. Box 144, Bule Hora, Oromia, Federal Democratic Republic of Ethiopia

Gizachew Dabi

Peoples’ Friendship University of Russia (RUDN University); Arba Minch University

Email: sdlami@yahoo.com
ORCID iD: 0000-0001-9669-6177

master of the Department of Civil Engineering, Academy of Engineering of the RUDN University, assistant lecturer in the Department of Civil Engineering, Institute of Technology of the AMU

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; P.O. Box 21, Arba Minch, SNNPR, Federal Democratic Republic of Ethiopia

Tewodros Baza

Peoples’ Friendship University of Russia (RUDN University); Arba Minch University

Email: sdlami@yahoo.com
ORCID iD: 0000-0002-6752-4103

master of the Department of Civil Engineering, Academy of Engineering of the RUDN University, assistant lecturer in the Department of Civil Engineering, Institute of Technology of the AMU

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; P.O. Box 21, Arba Minch, SNNPR, Federal Democratic Republic of Ethiopia

Marina Rynkovskaya

Peoples’ Friendship University of Russia (RUDN University)

Email: sdlami@yahoo.com
ORCID iD: 0000-0003-2206-2563

Director of the Department of Civil Engineering, Academy of Engineering, PhD, Docent

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

参考

  1. Bennett T.D. Role of BIM in infrastructure seismic retrofits. Structure. 2012;45:44-45.
  2. Cornell C.A., Krawinkler H. Progress and challenges in seismic performance. Assessment. PEER Center News. 2000;3(2):1-2.
  3. Lee T.-H., Mosalam K.M. Probabilistic seismic evaluation of reinforced concrete structural components and systems. Pacific Earthquake Engineering Research Center; 2006.
  4. Vitiello U., Ciotta V., Salzano A., Asprone D., Manfredi G., Cosenza E. BIM-based approach for the cost-optimization of seismic retrofit strategies on existing buildings. Automation in Construction. 2019;98:90-101. https://doi.org/10.1016/j.autcon.2018.10.023
  5. Azhar S., Nadeem A., Mok J., Leung B. Building Information Modeling (BIM): a new paradigm for visual interactive modeling and simulation for construction projects. Proceedings of First International Conference on Construction in Developing Countries. 2008:435-446.
  6. Succar B. Building information modelling framework: a research and delivery foundation for industry stakeholders. Automation in Construction. 2009;18:357-375. https://doi.org/10.1016/j.autcon.2008.10.003
  7. Azhar S., Khalfan M., Maqsood T. Building Information Modeling (BIM): now and beyond. Australasian Journal of Construction Economics and Building. 2012;12(4):15-28. https://doi.org/10.5130/ajceb.v12i4.3032
  8. Bryde D., Broquetas M., Volm J.M. The project benefits of building information modelling (BIM). International Journal of Project Management. 2013;31(7):971-980. https://doi.org/10.1016/j.ijproman.2012.12.001
  9. Dong R.-R. The application of BIM technology in building construction quality management and talent training. Eurasia Journal of Mathematics Science and Technology Education. 2017;13(7):4311-4317. https://doi.org/10.12973/eurasia.2017.00860a
  10. Cao D., Li H. Linking the motivations and practices of design organizations to implement building information modeling in construction projects: empirical study in China. Journal of Management in Engineering. 2016;32(6):04016013. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000453
  11. Chong H.-Y., Wang X. The outlook of building information modeling for sustainable development. Clean Technologies and Environmental Policy. 2016;18(6):1877-1887. https://doi.org/10.1007/s10098-016-1170-7
  12. Arayici Y., Coates S., Koskela L.J., Kagioglou M., et al. Technology adoption in the BIM implementation for lean architectural practice. Automation in Construction. 2011;20(2):189-195. https://doi.org/10.1016/j.autcon.2010.09.016
  13. Ratajczak J., Malacarne G., Krause D., Matt D. The BIM approach and stakeholders integration in the AEC sector - benefits and obstacles in South Tyrolean context. 4th International Workshop on Design in Civil and Environmental Engineering (DCEE). 2015:32-40.
  14. Razali M.F., Haron N.A., Salihudin H., et al. A review: application of Building Information Modelling (BIM) over building life cycles. IOP Conference Series: Earth and Environmental Science. 2019;357:012028. https://doi.org/10.1088/1755-1315/357/1/012028
  15. Di Giuda G.M., Villa V., Piantanida P. BIM and energy efficient retrofitting in school buildings. Energy Procedia. 2015;78:1045-1050. https://doi.org/10.1016/j.egypro.2015.11.066
  16. Musella C., Serra M., Salzano A., Menna C., Asprone D. Open BIM standards: a review of the processes for managing existing structures in the pre-and post-earthquake phases. CivilEng. 2020;1(3):291-309.
  17. Goulet C.A., Haselton C.B., Mitrani-Reiser J., Beck J.L., Deierlein G.G., Porter K.A., Stewart J.P. Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building - from seismic hazard to collapse safety and economic losses. Earthq. Eng. Struct. Dyn. 2007;36:1973-1997.
  18. Motawa I., Almarshad A. A knowledge-based BIM system for building maintenance. Automation in Construction. 2013;29:173-182.
  19. Haselton C.B. Assessing seismic collapse safety of modern reinforced concrete moment frame buildings (Ph.D. Dissertation). Stanford University; 2006.
  20. Georgiou C., Vamvatsikos D., Christodoulou S. BIM-based damage assessment and scheduling for post-earthquake building rehabilitation. 10th European Conference on Product & Process Modelling (ECPPM2014). 2014.
  21. Zhen X., Furong Z., Wei J., et al. A 5D simulation method on post-earthquake repair process of buildings based on BIM. Earthq. Eng. Eng. Vib. 2020;19:541-560.
  22. Christodoulou S.E., Vamvatsikos D., Georgiou C. A BIM-based framework for forecasting and visualizing seismic damage. Cost and time to repair. University of Cyprus; 2010.
  23. Porter K.A., Kiremidjian A.S., LeGrue J.S. Assembly-based vulnerability of buildings and its use in performance evaluation. Earthquake Spectra. 2001;17(2):291-312. https://doi.org/10.1193/1.1586176
  24. Dolšek M., Fajfar P. IN2 - a simple alternative for IDA. 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada; 2004.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».