Role of pharmacogenetic factors in the development of side effects of methotrexate in the treatment of malignant tumors: A review

封面

如何引用文章

全文:

详细

Methotrexate (MTX) is one of the main chemotherapeutic agents that has determined the high effectiveness of protocols for the treatment of acute lymphoblastic leukemia and non-Hodgkin lymphomas. The reverse side of the high anti-tumor activity of MTX is the adverse reactions, which require accompanying preventive therapy. But even modern accompanying therapy in some cases does not avoid severe toxicity from the skin and mucous membranes, nervous system, kidneys, liver. MTX pharmacokinetics exhibits significant individual variability, which may be a reflection of genetic variability. Numerous pharmacogenetic studies have evaluated the effect of polymorphism of various genes involved in MTX metabolism on MTX pharmacokinetics and the development of toxic manifestations in order to improve patient outcomes and decrease drug toxicity. This review presents impact of key metabolic MTX genes (ATIC, DHFR, GGH, FPGS, MTHFR, MTR, MTRR, TYMS) and transporter proteins genes (ABCB1, ABCG2, ABCC2, ABCC4, SLC19A1, SLCO1B1) in the development of MTX side effects. Polymorphic markers in SLCO1B1 gene have the most influence with MTX pharmacokinetic.

作者简介

Timur Valiev

Blokhin National Medical Research Center of Oncology; Sechenov First Moscow State Medical University (Sechenov University)

编辑信件的主要联系方式.
Email: timurvaliev@mail.ru
ORCID iD: 0000-0002-1469-2365

D. Sci. (Med.), Prof.

俄罗斯联邦, Moscow

Vera Semenova

Blokhin National Medical Research Center of Oncology; Engelhardt Institute of Molecular Biology

Email: sulpiridum@yandex.ru
ORCID iD: 0000-0002-9705-1001

Graduate Student

俄罗斯联邦, Moscow

Anna Ikonnikova

Engelhardt Institute of Molecular Biology

Email: timurvaliev@mail.ru
ORCID iD: 0000-0002-8434-5916

junior researcher

俄罗斯联邦, Moscow

Alisa Petrova

Engelhardt Institute of Molecular Biology

Email: alisa7397396@gmail.com
ORCID iD: 0000-0002-7536-5683

Student

俄罗斯联邦, Moscow

Tatiana Belysheva

Blokhin National Medical Research Center of Oncology

Email: klinderma@bk.ru
ORCID iD: 0000-0001-5911-553X

D. Sci. (Med.)

俄罗斯联邦, Moscow

Tatiana Nasedkina

Engelhardt Institute of Molecular Biology

Email: tanased06@rambler.ru
ORCID iD: 0000-0002-2642-4202

D. Sci. (Biol.)

俄罗斯联邦, Moscow

参考

  1. Махонова Л.А. Современные методы лечения острого лимфобластного лейкоза у детей. Автореф. дис. … канд. мед. наук. М., 1963; с. 14 [Mahonova LA. Sovremenie metody lechenya ostrogo limphoblastnogo leykoza u detey. Аvtoref. dis. … kand. med. nauk. Moscow, 1963; p. 14 (in Russian)].
  2. Demidowicz E, Pogorzała M, Łęcka M, et al. Outcome of pediatric acute lymphoblastic leukemia: sixty years of progress. Anticancer Res. 2019;39(9):5203-7. doi: 10.21873/anticanres.13717
  3. Валиев Т.Т. Лимфома Беркитта у детей: 30 лет терапии. Педиатрия. Журн. им. Г.Н. Сперанского. 2020;99(4):35-41 [Valiev TT. Lymphoma Berkitta u detey: 30 let terapii. Pediatriya. Zhurnal im. GN Speranskogo. 2020;99(4):35-41 (in Russian)].
  4. Kara MK, Peter DC, Qinglin P, et al. Response-adapted Therapy for the Treatment of Children with Newly Diagnosed High risk Hodgkin lymphoma (AHOD0831): a report from the Children's Oncology Group. Br J Haematol. 2019;187(1):39-48. doi: 10.1111/bjh.16014
  5. Sakura T, Hayakawa F, Sugiura I, et al. High-dose methotrexate therapy significantly improved survival of adult acute lymphoblastic leukemia: a phase III study by JALSG. Leukemia. 2018;32(3):626-32. doi: 10.1038/leu.2017.283
  6. ALL IC-BFM 2009. A randomized trial of the I-BFM-SG for the management of childhood non-B acute lymphoblastic leukemia final version of therapy protocol from August-14-2009. Available at: http://www.bialaczka.org/wp-content/uploads/2016/10/ALLIC_BFM_2009.pdf. Accessed: 28.02.2020 (in Russian)].
  7. ALL–MB 2015. Режим доступа: https://fnkc.ru/docs/ALLMB2015.pdf. Ссылка активна на 22.09.2021 [ALL–MB 2015. Available at: https://fnkc.ru/docs/ALLMB2015.pdf. Accessed: 22.09.2021 (in Russian)].
  8. Bhojwani D, Sabin ND, Pei D, et al. Methotrexate-induced Neurotoxicity and Leukoencephalopathy in Childhood Acute Lymphoblastic Leukemia. J Clin Oncol. 2014;32(9):949-59. doi: 10.1200/JCO.2013.53.0808
  9. Schmiegelow K, Klaus Müller K, Mogensen SS, et al. Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy. F1000Res. 2017;6:444. doi: 10.12688/f1000research.10768.1
  10. Sajith M, Pawar A, Bafna V, et al. Serum methotrexate level and side effects of high dose methotrexate infusion in pediatric patients with acute lymphoblastic leukaemia (ALL). Indian J Hematol Blood Transfus. 2020;36(1):51-8. doi: 10.1007/s12288-019-01144-3
  11. Lima A, Sousa H, Monteiro J, et al. Genetic polymorphisms in low-dose methotrexate transporters: current relevance as methotrexate therapeutic outcome biomarkers. Pharmacogenomics. 2014;15(12):1611-35. doi: 10.2217/pgs.14.116
  12. Fowler B. The folate cycle and disease in humans. Kidney Int Suppl. 2001;78:S221-9. doi: 10.1046/j.1523-1755.2001.59780221.x
  13. Suthandiram S, Gan GG, Zain SM, et al. Effect of polymorphisms within methotrexate pathway genes on methotrexate toxicity and plasma levels in adults with hematological malignancies. Pharmacogenomics. 2014;15(11):1479-94. doi: 10.2217/pgs.14.97
  14. Cao M, Guo M, Wu DQ, Meng L. Pharmacogenomics of Methotrexate: current status and future outlook. Curr Drug Metab. 2018;19(14):1182-7. doi: 10.2174/1389200219666171227201047
  15. Mikkelsen TS, Thorn CF, Yang JJ, et al. PharmGKB summary: methotrexate pathway. Pharmacogenet Genomics. 2011;21(10):679-86. doi: 10.1097/FPC.0b013e328343dd93
  16. Inoue K, Yuasa H. Molecular basis for pharmacokinetics and pharmacodynamics of methotrexate in rheumatoid arthritis therapy. Drug Metab Pharmacokinet. 2014;29(1):12-9. doi: 10.2133/dmpk.dmpk-13-rv-119
  17. Esmaili MA, Kazemi A, Faranoush M, et al. Polymorphisms within methotrexate pathway genes: relationship between plasma methotrexate levels, toxicity experienced and outcome in pediatric acute lymphoblastic leukemia. Iran J Basic Med Sci. 2020;23(6):800-9. doi: 10.22038/ijbms.2020.41754.9858
  18. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Garcia-Orad A. A systematic review and meta-analysis of MTHFR polymorphisms in methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia. Pharmacogenomics J. 2013;13(6):498-506. doi: 10.1038/tpj.2012.44
  19. Fukushima H, Fukushima T, Sakai A, et al. Polymorphisms of MTHFR associated with higher relapse/death ratio and delayed weekly MTX administration in pediatric lymphoid malignancies. Leuk Res Treatment. 2013;2013:238528. doi: 10.1155/2013/238528
  20. Ezhilarasan D. Hepatotoxic potentials of methotrexate: understanding the possible toxicological molecular mechanisms. Toxicology. 2021;458:152840. doi: 10.1016/j.tox.2021.152840
  21. Bernsen EC, Hagleitner MM, Kouwenberg TW, Hanff LM. Pharmacogenomics as a tool to limit acute and long-term adverse effects of chemotherapeutics: an update in pediatric oncology. Front Pharmacol. 2020;11:1184. doi: 10.3389/fphar.2020.01184
  22. Stamp LK, Roberts RL. Effect of genetic polymorphisms in the folate pathway on methotrexate therapy in rheumatic diseases. Pharmacogenomics. 2011;12(10):1449-63. doi: 10.2217/pgs.11.86
  23. Trevino LR, Shimasaki N, Yang W, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009;27(35):5972-8. doi: 10.1200/JCO.2008.20.4156
  24. Ramsey LB, Panetta JC, Smith C, et al. Genome-wide study of methotrexate clearance replicates SLCO1B. Blood. 2013;121(6):898-904. doi: 10.1182/blood-2012-08-452839
  25. Ramsey LB, Bruun GH, Yang W, et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 2012;22(1):1-8. doi: 10.1101/gr.129668.111
  26. Spyridopoulou KP, Dimou NL, Hamodrakas SJ, Bagos PG. Methylene tetrahydrofolate reductase gene polymorphisms and their association with methotrexate toxicity: a meta-analysis. Pharmacogenet Genomics. 2012;22(2):117-33. doi: 10.1097/FPC.0b013e32834ded2a
  27. Campbell JM, Bateman E, Stephenson MD, et al. Methotrexate-induced toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses. Cancer Chemother Pharmacol. 2016;78(1):27-39. doi: 10.1007/s00280-016-3043-5
  28. Umerez M, Gutierrez-Camino Á, Muñoz-Maldonado C, et al. MTHFR polymorphisms in childhood acute lymphoblastic leukemia: influence on methotrexate therapy. Pharmgenomics Pers Med. 2017;10:69-78. doi: 10.2147/PGPM.S107047
  29. Yao P, He X, Zhang R, et al. The influence of MTHFR genetic polymorphisms on adverse reactions after methotrexate in patients with hematological malignancies: a meta-analysis. Hematology. 2019;24(1):10-9. doi: 10.1080/10245332.2018.1500750
  30. Lee YH, Bae SC. Association of the ATIC 347 C/G polymorphism with responsiveness to and toxicity of methotrexate in rheumatoid arthritis: a meta-analysis. Rheumatol Int. 2016;36(11):1591-9. doi: 10.1007/s00296-016-3523-2
  31. Cheng Y, Chen MH, Zhuang Q, et al. Genetic factors involved in delayed methotrexate elimination in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2021;68(5):e28858. doi: 10.1002/pbc.28858
  32. Gervasini G, de Murillo SG, Jiménez M, et al. Dihydrofolate reductase genetic polymorphisms affect methotrexate dose requirements in pediatric patients with acute lymphoblastic leukemia on maintenance therapy. J Pediatr Hematol Oncol. 2017;39(8):589-95. doi: 10.1097/MPH.0000000000000908
  33. Wang SM, Sun LL, Zeng WX, et al. Influence of genetic polymorphisms of FPGS, GGH, and MTHFR on serum methotrexate levels in Chinese children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2014;74(2):283-9. doi: 10.1007/s00280-014-2507-8
  34. Hegyi M, Arany A, Semsei AF, et al. Pharmacogenetic analysis of high-dose methotrexate treatment in children with osteosarcoma. Oncotarget. 2017;8(6):9388-98. doi: 10.18632/oncotarget.11543
  35. Uhlen M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419
  36. Huang Z, Tong HF, Li Y, et al. Effect of the polymorphism of folylpolyglutamate synthetase on treatment of high-dose methotrexate in pediatric patients with acute lymphocytic leukemia. Med Sci Monit. 2016;22:4967-73. doi: 10.12659/msm.899021
  37. Taylor ZL, Vang J, Lopez-Lopez E, et al. Systematic review of pharmacogenetic factors that influence high-dose methotrexate pharmacokinetics in pediatric Malignancies. Cancers (Basel). 2021;13(11):2837. doi: 10.3390/cancers13112837
  38. den Hoed MA, Lopez-Lopez E, te Winkel ML, et al. Genetic and metabolic determinants of methotrexate-induced mucositis in pediatric acute lymphoblastic leukemia. Pharmacogenomics J. 2015;15(3):248-54. doi: 10.1038/tpj.2014.63
  39. Maagdenberg H, Oosterom N, Zanen J, et al. Genetic variants associated with methotrexate-induced mucositis in cancer treatment: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021;161:103312. doi: 10.1016/j.critrevonc.2021.103312
  40. Sorich MJ, Pottier N, Pei D, et al. In vivo response to methotrexate forecasts outcome of acute lymphoblastic leukemia and has a distinct gene expression profile. PLoS Med. 2008;5(4):e83. doi: 10.1371/journal.pmed.0050083
  41. Pietrzyk JJ, Bik-Multanowski M, Skoczen S, et al. Polymorphism of the thymidylate synthase gene and risk of relapse in childhood ALL. Leuk Res. 2011;35(11):1464-6. doi: 10.1016/j.leukres.2011.04.007
  42. de Beaumais TA, Jacqz-Aigrain E. Intracellular disposition of methotrexate in acute lymphoblastic leukemia in children. Curr Drug Metab. 2012;13(6):822-34. doi: 10.2174/138920012800840400
  43. Roszkiewicz J, Michałek D, Ryk A, et al. SLCO1B1 variants as predictors of methotrexate-related toxicity in children with juvenile idiopathic arthritis. Scand J Rheumatol. 2021;50(3):213-7. doi: 10.1080/03009742.2020.1818821
  44. Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, et al. Pharmacogenomics in pediatric oncology: review of gene-drug associations for clinical use. Int J Mol Sci. 2016;17(9):1502. doi: 10.3390/ijms17091502
  45. Yousef AM, Farhad R, Alshamaseen D, et al. Folate pathway genetic polymorphisms modulate methotrexate-induced toxicity in childhood acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2019;83(4):755-762. doi: 10.1007/s00280-019-03776-8
  46. Nacional Cancer Institute. Cancer Therapy Evaluation Program: Common Toxicity Criteria Manual; National Cancer Institute: Bethesda, MD, USA, 1999; p. 1-29.
  47. Assaraf Y. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat. 2006;9(4-5):227-46. doi: 10.1016/j.drup.2006.09.001
  48. Relton CL, Wilding CS, Pearce MS, et al. Gene-gene interaction in folate-related genes and risk of neural tube defects in a UK population. J Med Genet. 2004;41(4):256-60. doi: 10.1136/jmg.2003.010694
  49. Zinck JW, MacFarlane AJ. Approaches for the identification of genetic modifiers of nutrient dependent phenotypes: examples from folate. Front Nutr. 2014;1:8. doi: 10.3389/fnut.2014.00008
  50. Amos W, Driscoll E, Hoffman JI. Candidate genes versus genome-wide associations: which are better for detecting genetic susceptibility to infectious disease? Proc Biol Sci. 2011;278(1709):1183-8. doi: 10.1098/rspb.2010.1920.
  51. Pavlovic S, Kotur N, Stankovic B, et al. Pharmacogenomic and pharmacotranscriptomic profiling of childhood acute lymphoblastic leukemia: paving the way to personalized treatment. Genes (Basel). 2019;10(3):191. doi: 10.3390/genes10030191

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Simplified scheme of intracellular metabolism of MTX. MTX enters the cell trough SLC19A1, after that, MTX is transformed into polyglutamate form and inhibits DHFR, TYMS, ATIC. The removal of MTX from the cell is performed by means of membrane transporters ABC (adapted [17]).

下载 (221KB)

版权所有 © Consilium Medicum, 2021

Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。
 


##common.cookie##