Membrane (CD8⁺PD-1⁺ and CD4+PD-1⁺) and soluble (sPD-1 and sPD-L1) forms of immune checkpoints in melanoma, breast cancer, and oral mucosal cancer patients: A observational study

封面

如何引用文章

全文:

详细

Background. The PD-1/PD-L1 pathway plays an important role in tumor evasion from immunological surveillance. In addition to the membrane forms of PD-1 and PD-L1, there are soluble variants: sPD-1 and sPD-L1. Both membrane and soluble forms have immunoregulatory properties and can affect the function and number of different immune cell populations.

Aim. To study the relationship between the initial level of CD8⁺PD-1⁺ and CD4+PD-1⁺ lymphocytes and soluble forms of sPD-1 and sPD-L1 with the percentage of the main effector and regulatory populations of peripheral blood (PB) lymphocytes and tumor-infiltrating lymphocytes.

Materials and methods. The study included melanoma, breast cancer and the oral mucosa cancer patients. The percentage of cell populations of PB lymphocytes and tumor-infiltrating lymphocytes was determined by flow cytometry before treatment. The concentrations of sPD-1 and sPD-L1 proteins were studied in blood serum using enzyme immunoassay.

Results. The relationship of the level of CD8⁺PD-1⁺ cells with certain populations of CD8-lymphocytes in PB and tumor tissue was found. In the PB of melanoma patients with CD8⁺CD11b⁺CD28⁺ and CD8⁺CD11b⁻CD28⁻ T cells, in breast cancer patients with a population of CD8⁺CD11b⁺CD28⁺ lymphocytes. In the tumor tissue of all patients there was a positive correlation with a population of regulatory CD8⁺CD11b⁻CD28⁻ T cells. The immunoregulatory properties of sPD-1 and sPD-L1 were confirmed. Both sPD-1 and sPD-L1 levels were positively correlated with the number of suppressor CD8⁺CD11b⁻CD28⁻ T cells and negatively with the level of CD8 lymphocytes, CD8⁺CD11b⁺CD28⁺ cytotoxic/memory T cells, B cells and activated CD25 lymphocytes.

Conclusion. The results of the study can make a certain contribution to the study of the prognostic significance of membrane and soluble forms of PD-1 and PD-L1, taking into account the peculiarities of their relationship with suppressor and effector populations of lymphocytes of systemic and local immunity.

作者简介

Tatiana Zabotina

Blokhin National Medical Research Center of Oncology

编辑信件的主要联系方式.
Email: tatzabotina@yandex.ru
ORCID iD: 0000-0001-7631-5699

d. sci. (biol.)

俄罗斯联邦, Moscow

Antonina Chertkova

Blokhin National Medical Research Center of Oncology

Email: antcher@gmail.com
ORCID iD: 0000-0001-9146-5986

cand. sci. (med.)

俄罗斯联邦, Moscow

Anna Borunova

Blokhin National Medical Research Center of Oncology

Email: borunova-a@yandex.ru
ORCID iD: 0000-0002-1854-3455

cand. sci. (med.)

俄罗斯联邦, Moscow

Nikolay Kushlinskii

Blokhin National Medical Research Center of Oncology

Email: biochimia@yandex.ru
ORCID iD: 0000-0002-3898-4127

d. sci. (med.), prof., acad. RAS

俄罗斯联邦, Moscow

Elena Gershtein

Blokhin National Medical Research Center of Oncology

Email: esgershtein@gmail.com
ORCID iD: 0000-0002-3321-801X

d. sci. (biol.), prof.

俄罗斯联邦, Moscow

Elena Zakharova

Blokhin National Medical Research Center of Oncology

Email: zakharovaen@yandex.ru
ORCID iD: 0000-0003-2790-6673

cand. sci. (med.)

俄罗斯联邦, Moscow

Esma Shoua

Blokhin National Medical Research Center of Oncology

Email: essfires@gmail.com
ORCID iD: 0000-0003-3937-474X

oncologist

俄罗斯联邦, Moscow

Vasily Tsiklauri

Blokhin National Medical Research Center of Oncology

Email: Tvtsiklauri@yandex.ru
ORCID iD: 0000-0002-3090-695X

oncologist

俄罗斯联邦, Moscow

Igor Samoylenko

Blokhin National Medical Research Center of Oncology

Email: i.samoylenko@ronc.ru
ORCID iD: 0000-0001-7150-5071

cand. sci. (med.)

俄罗斯联邦, Moscow

Maxim Khoroshilov

Blokhin National Medical Research Center of Oncology

Email: maximkhoroshilov@gmail.com
ORCID iD: 0000-0002-3770-5173

oncologist

俄罗斯联邦, Moscow

Zaira Kadagidze

Blokhin National Medical Research Center of Oncology

Email: kad-zaira@yandex.ru
ORCID iD: 0000-0002-0058-0987

d. sci. (med.), prof.

俄罗斯联邦, Moscow

参考

  1. Кушлинский Н.Е., Фридман М.В., Морозов А.А., и др. PD-1-путь: биологическая значимость, клиническое применение и существующие проблемы. Молекулярная медицина. 2019;(1) [Kushlinskii NE, Fridman MV, Morozov AA, et al. PD-1-path: biological significance, clinical application, and existing problems. Molecular Medicine. 2019;(1) (in Russian)]. doi: 10.29296/24999490-2019-01-01
  2. Ai L, Xu A, Xu J. Roles of PD-1/PD-L1 pathway: Signaling, cancer, and beyond. Adv Exp Med Biol. 2020;1248:33-59. doi: 10.1007/978-981-15-3266-53
  3. Jiang Y, Chen M, Nie H, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Hum Vaccin Immunother. 2019;15(5):1111-22. doi: 10.1080/21645515.2019.1571892
  4. Li HY, McSharry M, Bullock B, et al. The tumor microenvironment regulates sensitivity of murine lung tumors to PD-1/PD-L1 antibody blockade. Cancer Immunol Res. 2017;5(9):767-77. doi: 10.1158/2326-6066.CIR-16-0365
  5. Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13(3):143-58. doi: 10.1038/nrclinonc.2015.209
  6. Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol. 2021;18(4):842-59. doi: 10.1038/s41423-020-00565-9
  7. Solomon B, Young RJ, Bressel M, et al. Prognostic significance of PD-L1(+) and CD8(+) immune cells in HPV(+) oropharyngeal squamous cell carcinoma. Cancer Immunol Res. 2018;6(3):295-304. doi: 10.1158/2326-6066.CIR-17-0299
  8. Кушлинский Н.Е., Герштейн Е.С., Горячева И.О., и др. Растворимый лиганд рецептора контрольной точки иммунитета (sPD-L1) в сыворотке крови при почечно-клеточном раке. Бюллетень экспериментальной биологии и медицины. 2018;166(9):325-9 [Kushlinskii NE, Gershtein ES, Goryacheva IO, et al. Soluble ligand of the immune checkpoint receptor (sPD-L1) in blood serum of patients with renal cell carcinoma. Bulletin of Experimental Biology and Medicine. 2018;166(9):325-9 (in Russian)].
  9. Ковалева О.В., Грачев А.Н., Макарова Э.И., и др. Прогностическая значимость sPD-1/sPD-L1 при раке почки в зависимости от фенотипа опухолевых и стромальных клеток. Онкоурология. 2022;18(2):17-28 [Kovaleva OV, Gratchev AN, Makarova EI, et al. Prognostic significance of sPD-1/sPD-L1 in renal cancer depending on the phenotype of tumor and stromal cells. Onkourologiya = Cancer Urology. 2022;18(2):17-28 (in Russian)]. doi: 10.17650/1726-9776-2022-18-2-17-28
  10. Li X, Zheng Y, Yue F. Prognostic value of soluble programmed cell death ligand-1 (sPD-L1) in various cancers: A meta-analysis. Target Oncol. 2021;16(1):13-26. doi: 10.1007/s11523-020-00763-5
  11. Ruan Y, Hu W, Li W, et al. Analysis of plasma EBV-DNA and soluble checkpoint proteins in nasopharyngeal carcinoma patients after definitive intensity-modulated radiotherapy. BioMed Res Int. 2019;2019:3939720. doi: 10.1155/2019/3939720
  12. Sorensen SF, Demuth C, Weber B, et al. Increase in soluble PD-1 is associated with prolonged survival in patients with advanced EGFR-mutated non-small cell lung cancer treated with erlotinib. Lung Cancer. 2016;100:77-84. doi: 10.1016/j.lungcan.2016.08.001
  13. Bian B, Fanale D, Dusetti N, et al. Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma. Oncoimmunology. 2019;8(4):e1561120. doi: 10.1080/2162402x.2018.1561120
  14. Xing YF, Zhang ZL, Shi MH, et al. The level of soluble programmed death-1 in peripheral blood of patients with lung cancer and its clinical implications. Zhonghua Jie He He Hu Xi Za Zhi. 2012;35(2):102-6 (in Chinese). PMID: 22455965
  15. Shi MH, Xing YF, Zhang ZL, et al. Effect of soluble PD-L1 released by lung cancer cells in regulating the function of T lymphocytes. Zhonghua Zhong Liu Za Zhi. 2013;35(2):85-8 (in Chinese). doi: 10.3760/cma.j.issn.0253-3766.2013.02.002
  16. Заботина Т.Н., Черткова А.И., Борунова А.А., и др. Взаимосвязь субпопуляций лимфоцитов больных раком молочной железы с результатами лечения. Российский биотерапевтический журнал. 2021;20(3):25-33 [Zabotina TN, Chertkova AI, Borunova AA, et al. Relationship of lymphocyte subpopulations in breast cancer patients with treatment results. Rossiyskiy bioterapevticheskiy zurnal = Russian Journal of Biotherapy. 2021;20(3):25-33 (in Russian)]. doi: 10.17650/1726-9784-2021-20-3-25-33
  17. Fiorentini S, Licenziati S, Alessandri G, et al. CD11b expression identifies CD8+CD28+ T lymphocytes with phenotype and function of both naive/memory and effector cells. J Immunol. 2001;166(2):900-7. doi: 10.4049/jimmunol.166.2.900
  18. Caruso A, Fiorentini S, Licenziati S, et al. Expansion of rare CD8+ CD28- CD11b- T cells with impaired effector functions in HIV-1-infected patients. J Acquir Immune Defic Syndr. 2000;24(5):465-74. doi: 10.1097/00126334-200008150-00012
  19. Freedman MS, Ruijs TC, Blain M, Antel JP. Phenotypic and functional characteristics of activated CD8+ cells: a CD11b-CD28- subset mediates noncytolytic functional suppression. Clin Immunol Immunopathol. 1991;60(2):254-67. doi: 10.1016/0090-1229(91)90068-l
  20. Beltra JC, Manne S, Abdel-Hakeem MS, et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. EJ Immunity. 2020;52(5):825-41. doi: 10.1016/j.immuni.2020.04.014
  21. Schnell A, Schmidl C, Herr W, Siska PJ. The peripheral and intratumoral immune cell landscape in cancer patients: a proxy fort biology and a tool for outcome prediction. Biomedicines. 2018;6(1):25. doi: 10.3390/biomedicines6010025
  22. Cillo AR, Kürten CHL, Tabib T, et al. Immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity. 2020;52(1):183-99.e9. doi: 10.1016/j.immuni.2019.11.014
  23. Garaud S, Buisseret L, Solinas C, et al. Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer. JCI Insight. 2019;5(18):e129641. doi: 10.1172/jci.insight.129641
  24. Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577(7791):549-55. doi: 10.1038/s41586-019-1922-8
  25. Кадагидзе З.Г., Черткова А.И., Заботина Т.Н., и др. Взаимосвязь маркеров ранней и поздней активации лимфоцитов с эффективностью неоадъювантной химиотерапии больных трижды негативным раком молочной железы. Иммунология. 2021;42(2):112-24 [Kadagidze ZG, Chertkova AI, Zabotina TN, et al. The relationship of markers of early and late lymphocytes activation with the effectiveness of neoadjuvant chemotherapy in patients with triple negative breast cancer with the effi ciency of neoadjuvant chemotherapy in triple negative breast cancer patients. Immunologiya = Immunology. 2021;42(2):112-24 (in Russian)]. doi: 10.33029/0206-4952-2021-42-2-112-124
  26. McFarland HI, Nahill SR, Maciaszek JW, Welsh RM. CD11b (Mac-1): A marker for CD8+ cytotoxic T cell activation and memory in virus infection. J Immunol. 1992;149(4):1326-3310. PMID: 1500720
  27. Christensen JE, Andreasen SO, Christensen JP, Thomsen AR. CD11b expression as a marker to distinguish between recently activated effector CD8(+) T cells and memory cells. Int Immunol. 2001;13(4):593-600. doi: 10.1093/intimm/13.4.593
  28. Marzagalli M, Ebelt ND, Manuel ER. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin Cancer Biol. 2019;59:236-50. doi: 10.1016/j.semcancer.2019.08.002

版权所有 © Consilium Medicum, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-相同方式共享 4.0国际许可协议的许可。
 


##common.cookie##