NGAL and KIM-1 – early urinary biomarkers of nephrotoxicity mediated by cisplatin: Observational study

Cover Page

Cite item

Full Text

Abstract

Background. Cisplatin is widely used in modern oncological practice. Despite high efficacy treatment with cisplatin is conjugated with high risk of nephrotoxicity. Approximately one third of patients develop renal disfunction after first injection of cisplatin. In clinical practice serum creatinine elevation is used as a marker of renal damage, which is observed after failure of 50% of kidney function. That is why the finding of early biomarker of nephrotoxicity is still an issue. NGAL and KIM-1 are markers of renal damage, the predictive value of which has been described in cardiac surgery and resuscitation practice: an increase in the concentration of these markers in urine precedes the development of renal damage, both ischemic and direct toxic.

Aim. To evaluate the role of NGAL and KIM-1 in urine as early markers of cisplatin nephrotoxicity.

Materials and methods. The study included 50 patients treated with cisplatin in combination with fluoropyrimidines or paclitaxel. Prior to treatment and over a period of 8 weeks, the Friedman test was used to assess blood pressure, plasma creatinine, potassium, urea levels, daily proteinuria, urine NGAL and KIM-1 levels, and glomerular filtration rate (GFR). ROC analysis was used to assess the prognostic significance of NGAL and KIM-1 in the development of nephrotoxicity.

Results. There was a statistically significant increase in the level of urea (χ²=17.7; df 4, p=0.001), potassium (χ²=42; df 4, p<0.001), a decrease in GFR (χ²=32.3; df 4, p<0.001), the appearance of proteinuria (χ²=50.4; df 4, p<0.001). The concentration of NGAL and KIM-1 increased already one week after the start of cisplatin therapy, reaching a maximum by 8 weeks (χ²=200; df 4, p<0.001). The appearance of NGAL at a concentration of 10.743 ng/ml and KIM-1 at a concentration of 182.4 pg/ml in the first week after administration of cisplatin allows predicting the development of nephrotoxicity by the 8th week with high sensitivity (90.91%) and specificity (94.87%), AUC 0.96.

Conclusion. The appearance of NGAL and KIM-1 in urine already in the first week of treatment allows predicting the development of nephrotoxicity – a decrease in GFR of less than 60 ml/min by the 8th week of therapy with high sensitivity and specificity. Both biomarkers can be considered early prognostically significant.

About the authors

Katerina S. Grechukhina

Lomonosov Moscow State University; Loginov Moscow Clinical Scientific Center

Author for correspondence.
Email: dr.grechukhina@gmail.com
ORCID iD: 0000-0002-0616-5477

Graduate Student

Russian Federation, Moscow; Moscow

Natalia V. Chebotareva

Lomonosov Moscow State University; Sechenov First Moscow State Medical University (Sechenov University)

Email: dr.grechukhina@gmail.com
ORCID iD: 0000-0003-2128-8560

D. Sci. (Med.)

Russian Federation, Moscow; Moscow

Liudmila G. Zhukova

Loginov Moscow Clinical Scientific Center

Email: dr.grechukhina@gmail.com
ORCID iD: 0000-0003-4848-6938

D. Sci. (Med.), Prof. RAS

Russian Federation, Moscow

Alexey S. Dorofeev

Loginov Moscow Clinical Scientific Center

Email: dr.grechukhina@gmail.com
ORCID iD: 0000-0001-9754-7579

Res. Assist.

Russian Federation, Moscow

Tatiana N. Krasnova

Lomonosov Moscow State University

Email: dr.grechukhina@gmail.com
ORCID iD: 0000-0002-7647-3942

Cand. Sci. (Med.)

Russian Federation, Moscow

References

  1. Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014;2014:967826. doi: 10.1155/2014/967826
  2. Browning RJ, Reardon PJT, Parhizkar M, et al. Drug Delivery Strategies for Platinum-Based Chemotherapy. ACS Nano. 2017;11:8560-78. doi: 10.1021/acsnano.7b04092
  3. Dasari S, Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-78. doi: 10.1016/j.ejphar.2014.07.025
  4. Hill JM, Speer RJ. Organo-platinum complexes as antitumor agents. Anticancer Res. 1982;2:173-85.
  5. Kostovska I, Trajkovska T, Topuzovska S, et al. Urinary nephrin is earlier, more sensitive and specific marker of diabetic nephropathy than microalbuminuria Urinarni nefrin je raniji, osetljiviji i specifičniji marker dijabetesne nefropatije nego mikroalbuminurija. J Med Biochem. 2020;39(1):83-90. doi: 10.2478/jomb-2019-0026
  6. Atilano-Roque A, Wen X, Aleksunes LM, et al. Nrf2 activators as potential modulators of injury in human kidney cells. Toxicol Rep. 2016;3:153-9. doi: 10.1016/j.toxrep.2016.01.006
  7. Hauser PV, Collino F, Bussolati B, et al. Nephrin and endothelial injury. Curr Opin Nephrol Hypertens. 2009;18:3-8. doi: 10.1097/MNH.0b013e32831a4713
  8. McCullough PA, Bouchard J, Waikar SS, et al. ADQI Consensus on AKI Biomarkers and Cardiorenal Syndromes. Contrib Nephrol. 2013;182:13-29. doi: 10.1159/000349963
  9. Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231-8. doi: 10.1016/S0140-6736(05)74811-X
  10. Moore DH, Blessing JA, McQuellon RP, et al. Phase III study of cisplatin with or without paclitaxel in stage IVB, recurrent, or persistent squamous cell carcinoma of the cervix: A Gynecologic Oncology Group study. J Clin Oncol. 2004;22:3113-9. doi: 10.1200/JCO.2004.04.170
  11. Yuen PST, Jo SK, Holly MK, et al. Ischemic and nephrotoxic acute renal failure are distinguished by their broad transcriptomic responses. Physiol Genomics. 2006;25:375-86. doi: 10.1152/physiolgenomics.00223.2005
  12. Wagener G, Gubitosa G, Wang S, et al. Urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery. Am J Kidney Dis. 2008;52:425-33. doi: 10.1053/j.ajkd.2008.05.018
  13. Devarajan P. Review: Neutrophil gelatinase-associated lipocalin: A troponin-like biomarker for human acute kidney injury. Nephrology. 2010;15:419-28. doi: 10.1111/j.1440-1797.2010.01317.x
  14. Vaidya VS, Ozer JS, Dieterle F, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol. 2010;28:478-85. doi: 10.1038/nbt.1623
  15. Bonventre J. Kidney injury molecule-1 (KIM-1): A urinary biomarker and much more. Nephrol Dial Transplant. 2009;24:3265-8. doi: 10.1093/ndt/gfp010
  16. Von der Maase H, Sengelov L, Roberts JT, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol. 2005;23:4602-8. doi: 10.1200/JCO.2005.07.757
  17. Thongprasert S, Napapan S, Charoentum C, et al. Phase II study of gemcitabine and cisplatin as first-line chemotherapy in inoperable biliary tract carcinoma. Ann Oncol. 2005;16:279-81. doi: 10.1093/annonc/mdi046
  18. Al-Batran SE, Hartmann JT, Probst S, et al. Phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil, leucovorin plus either oxaliplatin or cisplatin: A study of the Arbeitsgemeinschaft Internistische Onkologie. J Clin Oncol. 2008;26:1435-42. doi: 10.1200/JCO.2007.13.9378
  19. Izzedine H, Ederhy S, Goldwasser F, et al. Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol. 2009;20:807-15. doi: 10.1093/annonc/mdn713
  20. Dieterle F, Sistare F, Goodsaid F, et al. Renal biomarker qualification submission: A dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat Biotechnol. 2010;28:455-62. doi: 10.1038/nbt.1625
  21. Hartmann JT, Lipp HP. Toxicity of platinum compounds. Expert Opin Pharmacother. 2003;4:889-901. doi: 10.1517/14656566.4.6.889
  22. Rizo-Topete LM, Rosner MH, Ronco C. Acute kidney injury risk assessment and the nephrology rapid response team. Blood Purif. 2017;43:82-8. doi: 10.1159/000452402
  23. Shao X, Tian L, Xu W, et al. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: A meta-analysis. PLoS ONE. 2014;9. doi: 10.1371/journal.pone.0084131
  24. Mishra J, Mori K, Ma Q, et al. Neutrophil gelatinase-associated lipocalin: A novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol. 2004;24:307-15. doi: 10.1159/000078452
  25. Wagener G, Gubitosa G, Wang S, et al. Increased incidence of acute kidney injury with aprotinin use during cardiac surgery detected with urinary NGAL. Am J Nephrol. 2008;28:576-82. doi: 10.1159/000115973
  26. Cruz DN, de Cal M, Garzotto F, et al. Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med. 2010;36:444-51. doi: 10.1007/s00134-009-1711-1
  27. Nguyen MT, Devarajan P. Biomarkers for the early detection of acute kidney injury. Pediatr Nephrol. 2008;23:2151-7. doi: 10.1007/s00467-007-0470-x
  28. Wheeler DS, Devarajan P, Ma Q, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008;36:1297-303. doi: 10.1097/CCM.0b013e318169245a
  29. Nickolas TL, O’Rourke MJ, Yang J, et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148:810-9. doi: 10.7326/0003-4819-148-11-200806030-00003

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies