Immune-mediated adverse events in immune checkpoint inhibitors therapy: literature review

Cover Page

Cite item

Full Text

Abstract

Immune-mediated adverse events (imAEs) are complications of therapy with immune checkpoint inhibitors, which arise as a result of autoimmune inflammation. The article summarizes systemic (fatigue, fever), cutaneous (rash, itching), gastrointestinal (diarrhea, colitis, hepatitis, pancreatic dysfunction), endocrinological (hypothyroidism, hypophysitis, adrenal insufficiency, diabetes mellitus), pulmonary (pneumonitis, pleuritis), rheumatological (arthralgia), neurological (headache, sensory and motor disorders), renal (acute interstitial nephritis, lupus-like nephritis, granulomatous nephritis, diffuse interstitial nephritis and minimal change disease), hematological (anemia, cytopenia), cardiovascular (myocarditis) and ocular (conjunctivitis, episcleritis, ceratitis, blepharitis and uveitis) imAE. Pathogenetic mechanisms and treatment approaches (in accordance with toxicity grade and clinical recommendations) are discussed. Early symptom recognition, patient education and timely intervention are crucial for imAE correction.

About the authors

Marina A. Lyadova

City Clinical Cancer Hospital №1

Author for correspondence.
Email: dr.lyadova@gmail.com
ORCID iD: 0000-0002-9558-5579

Cand. Sci. (Med.)

Russian Federation, Moscow

Vladimir K. Lyadov

City Clinical Cancer Hospital №1; Russian Medical Academy of Continuous Professional Education; Novokuznetsk State Institute of Postgraduate Medical Education – branch of the Russian Medical Academy of Continuous Professional Education

Email: vlyadov@gmail.com
ORCID iD: 0000-0002-7281-3591
SPIN-code: 5385-7889

D. Sci. (Med.), Assoc. Prof.

Russian Federation, Moscow; Moscow; Novokuznetsk

References

  1. Kruger S, Ilmer M, Kobold S, et al. Advances in cancer immunotherapy 2019 – latest trends. J Exp Clin Cancer Res. 2019;38(1):268. doi: 10.1186/s13046-019-1266-0
  2. Pauken KE, Dougan M, Rose NR, et al. Adverse Events Following Cancer Immunotherapy:Obstacles and Opportunities. Trends Immunol. 2019;40(6):511-23. doi: 10.1016/j.it.2019.04.002
  3. Das S, Johnson DB. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J Immunother Cancer. 2019;7(1):306. doi: 10.1186/s40425-019-0805-8
  4. Wolchok JD, Saenger Y. The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist. 2008;13:2-9.
  5. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711-23.
  6. Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375-91.
  7. Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139-48.
  8. Puzanov I, Diab A, Abdallah K, et al;Society for Immunotherapy of Cancer Toxicity Management Working Group. Managing toxicities associated with immune checkpoint inhibitors:consensus recommendations from the Society for Immunotherapy of Cancer(SITC) Toxicity Management Working Group. J Immunother Cancer 2017;5(1):95.
  9. Weber JS, Kähler KC, Hauschild A. Management of immunerelated adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691-7.
  10. Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the immune-related adverse effects of immune checkpoint inhibitors:a review. JAMA Oncol. 2016;2(10):1346-53.
  11. Brahmer JR, Lacchetti C, Schneider BJ, et al. National Comprehensive Cancer Network. Management of immunerelated adverse events in patients treated with immune checkpoint inhibitor therapy:American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2018;JCO2017776385.
  12. Postow MA. Managing immune checkpoint-blocking antibody side effects. Am Soc Clin Oncol Educ Book. 2015:76-83.
  13. Marin-Acevedo JA, Harris DM, Burton MC. Immunotherapyinduced colitis:an emerging problem for the hospitalist. J Hosp Med. 2018;13(6):413-8.
  14. Gupta A, De Felice KM, Loftus EV Jr, Khanna S. Systematic review:colitis associated with anti-CTLA-4 therapy. Aliment Pharmacol Ther. 2015;42(4):406-17.
  15. Kim KW, Ramaiya NH, Krajewski KM, et al. Ipilimumab associated hepatitis:imaging and clinicopathologic findings. Invest New Drugs. 2013;31(4):1071-7.
  16. Friedman CF, Clark V, Raikhel AV, et al. Thinking critically about classifying adverse events:incidence of pancreatitis in patients treated with nivolumab plus ipilimumab. J Natl Cancer Inst. 2017;109(4).
  17. Поддубская Е.В., Секачева М.И., Гурьянова А.А. Эндокринологические осложнения ингибиторов контрольных точек иммунитета: результаты одноцентрового исследования. Сеченовский вестник. 2019;10(4):4-11 [Poddubskaya EV, Sekacheva MI, Guryanova AA. Endocrine adverse events of immune checkpoint inhibitors:results of a single-center study. Sechenov Medical Journal. 2019;10(4):4-11 (in Russian)]. doi: 10.47093/22187332.2019.4.4-11
  18. Barroso-Sousa R, Barry WT, Garrido-Castro AC, et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens a systematic review and meta-analysis. JAMA Oncol. 2018;4(2):173-82.
  19. Osorio JC, Ni A, Chaft JE, et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann Oncol. 2017;28(3):583-9.
  20. Weber JS, Yang JC, Atkins MB, Disis ML. Toxicities of immunotherapy for the practitioner. J Clin Oncol. 2015;33(18):2092-9.
  21. Iwama S, De Remigis A, Callahan MK, et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6(230):230-45.
  22. Faje A. Immunotherapy and hypophysitis:clinical presentation, treatment, and biologic insights. Pituitary. 2016;19(1):82-92.
  23. Hughes J, Vudattu N, Sznol M, et al. Precipitation of autoimmune diabetes with anti-PD-1 immunotherapy. Diabetes Care. 2015;38(4):55-7.
  24. Naidoo J, Wang X, Woo KM, et al. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J Clin Oncol. 2017;35(7):709-17.
  25. Денисова Е.С., Ардзинба М.С., Лактионов К.К., и др. Клинический случай иммуноопосредованного пневмонита после комбинированного лечения немелкоклеточного рака легкого. Медицинский совет. 2020;9:258-64 [Denisova ES, Ardzinba MS, Laktionov KK. A case report of immune-related pneumonitis after combined treatment of non small cell lung cancer. Medicinskiy sovet. 2020;9:258-64 (in Russian)].
  26. Suarez-Almazor ME, Kim ST, Abdel-Wahab N, Diab A. Immune-related adverse events with use of checkpoint inhibitors for immunotherapy of cancer. Arthritis Rheumatol. 2017;69(4):687-99.
  27. Naidoo J, Cappelli LC, Forde PM, et al. Inflammatory arthritis:a newly recognized adverse event of immune checkpoint blockade. Oncologist. 2017;22(6):627-30.
  28. Cuzzubbo S, Javeri F, Tissier M, et al. Neurological adverse events associated with immune checkpoint inhibitors:review of the literature. Eur J Cancer. 2017;73:1-8.
  29. Wanchoo R, Karam S, Uppal NN, et al. Cancer and Kidney International Network Workgroup on Immune Checkpoint Inhibitors. Adverse renal effects of immune checkpoint inhibitors:a narrative review. Am J Nephrol. 2017;45(2):160-9.
  30. Лактионов К.К., Саранцева К.А., Юдин Д.И., и др. Трехлетние результаты применения ниволумаба у больных с немелкоклеточным раком легкого в клинической практике национального медицинского исследовательского центра онкологии им. Н.Н. Блохина. Медицинский совет. 2019;19:16-21 [Laktionov KK, Sarantseva KA, Yudin DI, et al. Three-year results of application of nivolumab in patients with non-small cell lung cancer in clinical practice of the N.N. Blokhin Russian Cancer Research Center. Medicinskiy sovet. 2019;19:16-21 (in Russian)].
  31. Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749-55.
  32. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23-34.
  33. Carbone DP, Reck M, Paz-Ares L, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415-26.
  34. Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823-33.
  35. Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer(OAK):a phase 3, open-label, multicentre randomized controlled trial. Lancet. 2017;389:255-65.
  36. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803-13.
  37. Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856-67.
  38. Younes A, Santoro A, Shipp M, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17:1283-94.
  39. Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy:a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909-20.
  40. Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015-26.
  41. Kang YK, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens(ONO-4538-12, ATT RAC TION-2):a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10111):2461-71.
  42. Oh DY, Cham J, Zhang L, et al. Immune Toxicities Elicted by CTLA-4 Blockade in Cancer Patients Are Associated with Early Diversification of the T-cell Repertoire. Cancer Res. 2017;77(6):1322-30. doi: 10.1158/0008-5472.CAN-16-2324
  43. Osorio JC, Ni A, Chaft JE, et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann Oncol. 2017;28(3):583-9. doi: 10.1093/annonc/mdw640
  44. Das R, Bar N, Ferreira M, et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J Clin Invest. 2018;128(2):715-20. doi: 10.1172/JCI96798
  45. Tarhini AA, Zahoor H, Lin Y, et al. Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J Immunother Cancer. 2015;3:39. doi: 10.1186/s40425-015-0081-1
  46. Khan S, Khan SA, Luo X, et al. Immune dysregulation in cancer patients developing immune-related adverse events. Br J Cancer. 2019;120(1):63-8. doi: 10.1038/s41416-018-0155-1
  47. Lee J, Phong B, Egloff AM, Kane LP. TIM polymorphisms – genetics and function. Genes Immun. 2011;12(8):595-604. doi: 10.1038/gene.2011.75
  48. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8(3):239-45. doi: 10.1038/ni1443
  49. Heaney AP, Sumerel B, Rajalingam R, et al. HLA Markers DQ8 and DR53 Are Associated With Lymphocytic Hypophysitis and May Aid in Differential Diagnosis. J Clin Endocrinol Metab. 2015;100(11):4092-7. doi: 10.1210/jc.2015-2702
  50. Stamatouli AM, Quandt Z, Perdigoto AL, et al. Collateral Damage:Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors. Diabetes. 2018;67(8):1471-80. doi: 10.2337/dbi18-0002
  51. Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91-7. doi: 10.1126/science.aan3706
  52. Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017;28(6):1368-79. doi: 10.1093/annonc/mdx108
  53. Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079-84. doi: 10.1126/science.aad1329
  54. Young A, Quandt Z, Bluestone JA. The Balancing Act between Cancer Immunity and Autoimmunity in Response to Immunotherapy. Cancer Immunol Res. 2018;6(12):1445-52. doi: 10.1158/2326-6066
  55. Wei SC, Duffy CR, Allison JP. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018;8(9):1069-86. doi: 10.1158/2159-8290.CD-18-0367
  56. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711-23. doi: 10.1056/NEJMoa1003466
  57. Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade dysimmune toxicities:a collaborative position paper. Ann Oncol. 2016;27(4):559-74. doi: 10.1093/annonc/mdv623
  58. Grimm MO, Oppel-Heuchel H, Foller S. Treatment with PD-1/PD-L1 and CTLA-4 immune checkpoint inhibitors:Immune-mediated side effects. Urologe A. 2018;57(5):543-51. doi: 10.1007/s00120-018-0635-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».