Detection and monitoring of minimal residual disease in acute megakaryoblastic leukemia in children

Cover Page

Cite item

Full Text

Abstract

Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML), which is associated with poor prognosis for all patients except children with t(1;22) or Down syndrome. The frequency of complete remission in case of AMKL is comparable to the frequency of complete remission in other variants of AML, and the median survival is much lower. This determines the necessity to update criteria for assessment of the effect of treatment using flow cytometry definition of the level of minimal residual disease (MRD). Nowadays, there are no unified and standardized approaches for the measurement of MRD in case of myeloid leukemia, including AMKL, which prohibits adequate assessment of the therapy effect and in some cases – determination of the indications for allogeneic hematopoietic stem cells transplantation. The article identifies diagnostic features and describes approaches for the measurement of the level of MRD in case of AMKL.

Aim. The aim is to demonstrate the algorithms for diagnosing and measuring MRD in case of AML-M7 in children.

Materials and methods. The article analyzes the clinical and immunological profile of 10 boys and 4 girls with the initial diagnosis of AMKL between the ages of 3 months – 12 years old, 13 of them have received treatment in the FSBI «N.N. Blokhin National Medical Research Center of Oncology» and one – in the GBUZ «Morozovsky DGKB» between 1995 and 2020, The measurement of MRD was carried out in 6 patients. The measurement of MRD was carried out using both morphocytochemical method and multiparameter flow cytometry with megakaryocyte markers (CD61, CD42, CD41) in combination with other myeloid markers (CD13, CD33), CD34, CD117 and aberrant markers (mainly CD7).

Results. We showed that adequate measurement of the level of MRD had required detailed immunophenotyping during diagnosis to determine the aberration of megakaryoblasts. CD9 marker (100%), CD33 myeloid marker (69.2%), stem cell antigen CD34 (46.2%), CD13 (38.2%) in addition to megakaryocyte markers (100%) were most often expressed on blast cells in case of AMKL. The CD117 antigen was present on the blasts in 33.3% of cases. The expression of the T-cell-associated CD7 antigen (46.2%) was frequent. The measurement of MRD was carried out during the treatment (usually after an induction course) on the basis of the markers of megakaryocytic cell line (CD61, CD41, CD42a, CD42b), weak CD45 expression, as well as the immunophenotype characteristics during initial diagnosis. The level of MRD ranged from completely negative (0%; 0.006%) to evident (1.05%).

Conclusion. The detection of residual tumor megakaryoblasts in case of AML-M7 using flow cytometry is a promising method to evaluate the effect of therapy. The adequate measurement of the level of MRD requires detailed immunophenotyping during the diagnosis to determine the aberration of megakaryoblasts.

About the authors

Alexandra D. Palladina

Blokhin National Medical Research Center of Oncology

Author for correspondence.
Email: palladinaa@gmail.com
ORCID iD: 0000-0002-9400-7347

doctor, Blokhin National Medical Research Center of Oncology

Russian Federation, Moscow

Aleksandr V. Popa

Pirogov Russian National Research Medical University

Email: apopa@list.ru
ORCID iD: 0000-0001-5318-8033

D. Sci. (Med.), Prof. RAS

Russian Federation, Moscow

Timur T. Valiev

Blokhin National Medical Research Center of Oncology

Email: timurvaliev@mail.ru
ORCID iD: 0000-0002-1469-2365

D. Sci. (Med.)

Russian Federation, Moscow

Valentin G. Nikitaev

National Research Nuclear University MEPhI

Email: kaf46@mail.ru
ORCID iD: 0000-0002-4349-3023

D. Sci. (Techn.)

Russian Federation, Moscow

Olga A. Chernysheva

Blokhin National Medical Research Center of Oncology

Email: beznos.olga@gmail.com
ORCID iD: 0000-0002-9630-5591

Cand. Sci. (Med.)

Russian Federation, Moscow

Natalia A. Kupryshina

Blokhin National Medical Research Center of Oncology

Email: 2511@yandex.ru
ORCID iD: 0000-0001-8509-0954

Cand. Sci. (Med.)

Russian Federation, Moscow

Irina N. Serebryakova

Blokhin National Medical Research Center of Oncology

Email: palladinaa@gmail.com
ORCID iD: 0000-0002-8389-4737

Cand. Sci. (Med.)

Russian Federation, Moscow

Tamara V. Shvedova

Blokhin National Medical Research Center of Oncology

Email: palladinaa@gmail.com

biologist

Russian Federation, Moscow

Konstantin L. Kondratchik

Pirogov Russian National Research Medical University; Morozov Children’s Clinical Hospital

Email: morozov-14@yandex.ru
ORCID iD: 0000-0002-5195-4539

Cand. Sci. (Med.)

Russian Federation, Moscow; Moscow

Nikolai N. Tupitsyn

Blokhin National Medical Research Center of Oncology

Email: nntca@yahoo.com
ORCID iD: 0000-0003-3966-128X

D. Sci. (Med.)

Russian Federation, Moscow

References

  1. Von Boros J, Korenyi A. Uber einen fall von akuter megakaryocyblasten-leukamie, zugleich einige bemerkungen zum. Problem der akuten leukemie. Z Klin Med 1931; 118: 679–718.
  2. Hahn AW, et al. Acute megakaryocytic leukemia: What have we learned. Blood Rev 2015. doi: 10.1016/j.blre.2015.07.005
  3. Breton-Gorius J, Reyes F, Duhamel G, et al. Megakaryoblastic acute leukemia: identification by the ultrastructural demonstration of platelet peroxidase. Blood 1978; 51: 45–60.
  4. Bennett JM, Catovsky D, Daniel MT, et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7), a report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 460–2.
  5. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Eds. Swerdlow SH, Campo E, Harris NL, et al. IARC: Lyon, 2017; p. 163.
  6. Луговская С.А., Почтарь М.Е. Гематологический атлас. 4-е изд. М.–Тверь: Триада, 2016 [Lugovskaya SA, Postman ME. Hematological atlas. 4th ed. Moscow–Tver: Triada, 2016 (in Russian)].
  7. Окороков А. Диагностика болезней внутренних органов. Кн. 5-1. М.: Мед. лит-ра, 2019; с. 700 [Okorokov A. Diagnosis of diseases of internal organs. Book. 5-1. Moscow: Med. liter, 2019; p. 700 (in Russian)].
  8. Masettia R, Guidia V, Ronchinia L, et al. The changing scenario of non-Down syndrome acute megakaryoblastic leukemia in children. Crit Rev Oncol Hematol 2019; 138: 132–8.
  9. De Marchi F, Araki M, Komatsu N. Molecular features, prognosis, and novel treatment options for pediatric acute megakaryoblastic leukemia. Expert Rev Hematol 2019. doi: 10.1080/17474086.2019.1609351
  10. Pont J, Souvignet A, Campos L, et al. Accurate Quantification of Fourteen Normal Bone Marrow Cell Subsets in Infants to the Elderly by Flow Cytometry. Cytometry B Clin Cytom 2018; 94 (5): 627–36.
  11. Carroll A, Civin C, Schneider N, et al. The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group Study. Blood 1991; 78 (3): 748–52.
  12. Mercher T, Busson-Le Coniat M, Nguyen Khac F, et al. Recurrence of OTT-MAL fusion in t(1;22) of infant AML-M7. Genes Chromosomes Cancer 2002; 33: 22–8.
  13. Inaba H, Zhou Y, Abla O, et al. Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study. Blood 2015; 126 (13): 1575–84.
  14. O’Brien MM, Cao X, Pounds S, et al. Prognostic features in acute megakaryoblastic leukemia in children without Down syndrome: a report from the AML02 multicenter trial and the Children’s Oncology Group study POG 9421. Leukemia 2015; 344 (6188): 1173–8.
  15. Giri S, Pathak R, Prouet P, et al. Acute megakaryocytic leukemia is associated with worse outcomes than other types of acute myeloid leukemia. Blood 2014; 124 (25): 3833–4
  16. van Dongen JJ, Lhermitte L, Böttcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012; 26 (9): 1908–75. doi: 10.1038/leu.2012.120; PMID: 22552007
  17. Miyawaki K, Iwasaki H, Jiromaru T, et al. Identification of unipotent megakaryocyte progenitors in human hematopoiesis. Blood 2017; 129 (25): 3332–43. doi: 10.1182/blood-2016-09-741611; PMID: 28336526
  18. Nishikii H, Kanazawa Y, Umemoto T, et al. Unipotent Megakaryopoietic Pathway Bridging Hematopoietic Stem Cells and Mature Megakaryocytes. Stem Cells 2015; 33 (7): 2196–207. doi: 10.1002/stem.1985
  19. Ferkowicz MJ, Starr M, Xie X, et al. CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development 2003; 130: 4393–403; PubMed: 12900455
  20. Deutsch VR, Tomer A. Advances in megakaryocytopoiesis and thrombopoiesis: From bench to bedside. Br J Haematol 2013; 161: 778–93; PubMed: 23594368
  21. Björklund E, Gruber A, Mazur J, et al. CD34+ cell subpopulations detected by 8-color flow cytometry in bone marrow and in peripheral blood stem cell collections: application for MRD detection in leukemia patients. Int J Hematol 2009; 90 (3): 292–302. doi: 10.1007/s12185-009-0389-z; PMID: 19728029
  22. Wen Q, Goldenson B, Crispino JD. Normal and malignant megakaryopoiesis. Expert Rev Mol Med 2011; 13: e32. doi: 10.1017/S1462399411002043; PMID: 22018018; PMCID: PMC4869998
  23. Macedo A, Orfao A, Ciudad J, et al. Phenotypic analysis of CD34 subpopulations in normal human bone marrow and its application for the detection of minimal residual disease. Leukemia 1995; 9 (11): 1896–901. PMID: 7475281.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. CD7 coexpression on the blast cell population in case of acute megakaryoblastic leukemia (AMKL).

Download (23KB)
3. Fig. 2. CD56 antigen coexpression on the blast cell population in case of AMKL.

Download (11KB)
4. Fig. 3. The example of CD300 coexpression on the blasts in case of AMKL.

Download (15KB)
5. Fig. 4. Cells with the CD61 + 42a + CD117 + CD34 + CD9 + CD33-CD13- immunophenotype make up 0.01% of all registered events.

Download (22KB)
6. Fig. 5. Nucleated cells with expression of megacariocytic antigen CD61+42a+ of CD7/CD33.

Download (14KB)

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies