Gene polymorphisms role of blood coagulation in myocardial infarction development in patients with malignant tumors of thoracoabdominal localization

Cover Page

Cite item

Full Text

Abstract

Aim. To evaluate the role of polymorphic variants of blood coagulation genes (F2, F5, F7, F13, FGB, ITGA2, ITGB3, PAI-1) in the development of myocardial infarction in patients with malignant tumors of thoracoabdominal localization.

Materials and methods. The study included 143 patients with thoracoabdominal tumors operated in the oncological Department of surgical methods of treatment No.11 (thoracic Oncology) of the thoracoabdominal Department of the Blokhin National Medical Research Center of Oncology in 2018–2019. The study group (n=62) consisted of patients with a history of myocardial infarction or in the perioperative period. The control group (n=81) included patients who did not have severe concomitant cardiovascular diseases, including a family history. Molecular genetic study to determine the gene polymorphisms of blood coagulation were performed in the laboratory of clinical oncogenetic of the Blokhin National Medical Research Center of Oncology with use of reagents “Cardiogenetic Thrombophilia” (LLC “DNA-Technology”, Russia, RU No. FSR 2010/08414 from 22.11.2016).

Results. In the study group, 90.3% (n=56) of cases showed polymorphism -675 5G>4G of the PAI-1 gene (SERPINE1, a plasminogen activator inhibitor) associated with a decrease in the activity of the fibrinolytic system and an increased risk of thrombosis. In the control group, this mutation was observed significantly less frequently – in 67.9% (n=55) of cases (p<0.001). In the group of patients with myocardial infarction, polymorphism 807 C>T of the ITGA2 (integrin a2) gene responsible for platelet aggregation was detected in 66.1% (n=41) compared to 19.8% (n=16) in the control group (p<0.0001). Polymorphism 1565 T>C of the ITGB3 gene (platelet-derived fibrinogen receptor) responsible for fibrinogen-induced platelet aggregation was observed in 25.8% (n=16) of cases in the group of patients with myocardial infarction and in 12.4% (n=10) of cases in the group of patients without concomitant severe cardiovascular pathology (p<0.05). In 48.4% (n=30) of patients of the study group, genetic disorders of the FGB gene (fibrinogen, missense mutation -455G>A) were also registered, which resulted in the development of dysfibrinogenemia, leading to increased blood thrombogenicity; in the control group, this mutation was 2 times less common – 25.9% (n=21) of cases (p<0.01). Polymorphism 1691 G>A of the F5 gene (coagulation factor V, Leiden factor), which is considered one of the most significant genetic risk factors for thrombosis in Caucasians, was detected in 4.8% (n=3) of cases in the study group, while this mutation was not found in the control group. Polymorphism 20210 G>A of the F2 gene (coagulation factor II prothrombin), which is a key protein of the coagulation cascade associated with increased blood levels of prothrombin, was observed in 3.2% (n=2) of patients after myocardial infarction; in the control group, the carrier of this polymorphism was not found in any case. Disorders in the genes that promote hypocoagulation were also noted. Among patients who had a myocardial infarction, polymorphism 10976 G>A of the F7 gene (coagulation factor VII) was detected in 17.7% (n=11) of cases, polymorphism 103 G>T of the F13 gene (coagulation factor XIII) – in 41.9% (n=26) of cases. In patients of the control group, these genetic aberrations were found: in 18.5% (n=15) of cases – a mutation in the F7 gene (p>0.05) and in 45.7% (n=37) – in the F13 gene (p>0.05), respectively.

Conclusion. Based on the results of a molecular genetic study of factors associated with thrombogenic risk, a statistically significant difference in the frequency of occurrence of polymorphisms of genes involved in the process of thrombosis (polymorphisms: -455 G>A of the FGB gene, 807 C>T of the ITGA2 gene, 1565 T>C of the ITGB3 gene, -675 5G>4G of the PAI-1 gene) in patients who had a myocardial infarction, compared with patients without severe concomitant cardiovascular diseases. The frequency of 1691 G>A polymorphism of the F5 gene, one of the most significant genetic risk factors for thrombosis, reached 4.8%. The obtained data on the use of molecular genetic markers of thrombophilia in patients with malignant tumors of thoracoabdominal localization allow us to identify a group of patients with a high risk of developing perioperative myocardial infarction and take additional measures for the prevention and treatment of thrombotic complications.

About the authors

Anna A. Korolyova

Blokhin National Medical Research Center of Oncology

Author for correspondence.
Email: anna.korolyova@hotmail.com

Graduate Student, Blokhin National Medical Research Center of Oncology

Russian Federation, Moscow

Sergey S. Gerasimov

Blokhin National Medical Research Center of Oncology

Email: s_gerasimov@list.ru
ORCID iD: 0000-0002-0833-6452

D. Sci. (Med.)

Russian Federation, Moscow

Pavel V. Kononets

Blokhin National Medical Research Center of Oncology

Email: s_gerasimov@list.ru

Cand. Sci. (Med.)

Russian Federation

Liudmila N. Lyubchenko

Blokhin National Medical Research Center of Oncology; Sechenov First Moscow State Medical University (Sechenov University); National Medical Research Radiological Centre

Email: clingen@mail.ru
SPIN-code: 9589-9057
Scopus Author ID: 140311

D. Sci (Med.)

Russian Federation, Moscow

References

  1. Parpugga TK et al. The effect of PAI-1 4G/5G polymorphism and clinical factors on coronary artery occlusion in myocardial infarction. Dis. markers. 2015. http: //www.ncbi.nlm.nih.gov/pmc/articles/PMC4529953//
  2. Balta G, Altay C, Gurgey A. PAI-1 gene 4G/5G genotype: A risk factor for thrombosis in vessels of internal organs. Am J Hematol 2002; 71 (2): 89–93.
  3. Onalan O et al. Plasminogen activator inhibitor-1 4G4G genotype is associated with myocardial infarction but not with stable coronary artery disease. J Thromb Thrombolysis 2008; 26 (3): 211–7.
  4. Danesh J et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 2005; 294 (14): 1799–809.
  5. Martiskainen M. et al. Βeta-fibrinogen gene promoter A-455 allele associated with poor longterm survival among 55–71 years old Caucasian women in Finnish stroke cohort. BMC neurol 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131463
  6. Scarabin PY, Arveiler D, Amouyel P et al. Plasma fibrinogen explains much of the difference in risk of coronary heart disease between France and Northern Ireland. The PRIME study. Atherosclerosis 2003; 166: 103–9.
  7. Kucharska-Newton AM et al. Association of the platelet GPIIb/IIIa polymorphism with atherosclerotic plaquemorphology: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 2011; 216 (1): 151–6.
  8. Jusic-Karic A, Terzic R, Jerkic Z et al. Frequency and association of 1691 (G>A) FVL, 20210 (G>A) PT and 677 (C>T) MTHFR with deep vein thrombosis in the population of Bosnia and Herzegovina. Balkan J Med Genet 2016; 19 (1): 43–50.
  9. Mannucci PM et al. The association of factor V Leiden with myocardial infarction is replicated in 1880 patients with premature disease. J Thromb Haem 2010; 8 (10): 2116–21.
  10. Zdravkovic S et al. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J Intern Med 2002; 252 (3): 247–54.
  11. Strandberg K, Stenflo J, Nilsson C, Svensson PJ. APC-PCI complex concentration is higher in patients with previous venous thromboembolism with Factor V Leiden. J Thromb Haemost 2005; 3 (11): 2578–80. doi: 10.1111/j.1538-7836.2005.01617.х
  12. Caprini JA, Glase CJ, Anderson CB, Hathaway K. Laboratory markers in the diagnosis of venus thromboembolism. Circulation 2004; 109 (12 Suppl. 1): 14–8. doi: 10.1161/01.CIR.0000122869.59485.36
  13. Holst AG, Jensen G, Prescott E. Risk factors for venus thromboembolism: results from the Copenhagen City Heart Study. Circulation 2010; 121 (17): 1896–903. doi: 10.1161/CIRCALATIONAHA.109.921460
  14. Martinelli N et al. Combined effect of hemostatic gene polymorphisms and the risk of myocardial infarction in patients with advanced coronary atherosclerosis. PLoS one 2008; 3 (2): e1523.

Copyright (c) 2020 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies