Prospects for the use of big data, artificial intelligence, machine learning, neural networks, and deep learning in the diagnosis and treatment of malignant tumors of the genitourinary system: a review

Cover Page

Cite item

Full Text

Abstract

The review presents a comprehensive analysis of the latest advances in machine learning (ML), artificial neural networks (ANN), and deep learning (DL) in urologic oncology. As part of the study, the Russian and foreign scientific literature was ranked based on PubMed, MEDLINE, E-library, CYBERLENINKA, etc. The data related to the use of ML, ANN, and DL in the diagnosis and treatment of prostate cancer (PCa), bladder cancer (BC), testicular cancer, and kidney cancer was collected. Most often, ANN and ML in PCa were used for early diagnosis, prognosis, and personalized systemic treatment strategy development. ANN and DL models were trained with clinical parameters, NGS-sequencing results, Gleason scores, and digitized radiological, and histological images. Radiomics was also used to diagnose PCa, followed by analysis of special image texture features on a digital slide. In metastatic castration-resistant PCa, artificial intelligence (AI) algorithms were used to predict the response to docetaxel treatment. The prospects of using AI for tumor imaging during radical prostatectomy and when performing robot-assisted kidney resection were also addressed. A diagnostic approach for testicular malignancies based on computed tomography data is proposed using ML. Neuro-fuzzy modeling and ANN were used to diagnose BC. The algorithms were based on molecular biomarkers, including gene expression and methylation. The ML method based on images of cells obtained from urine samples of patients diagnosed with BC showed a diagnostic accuracy of 94%. DL in BC was used for accurate tumor typing based on their response to chemotherapy. Based on the results of deep machine learning, the molecular subtype of BC samples was predicted using histological examination. ML and DL algorithms for diagnosis, differential diagnosis, and prediction of recurrence and survival in kidney cancer were trained on CT texture analysis, genetic mutations, and Fuhrman nuclear grade. In addition to diagnosis, AI is used to optimize the treatment strategy for kidney cancer. In all cases, the ML, ANN, and DL algorithms improved the accuracy of diagnosis, survival assessment, and the effectiveness of pharmacological and surgical treatment of urologic malignancies.

About the authors

Alexander V. Khachaturyan

Blokhin National Medical Research Center of Oncology

Author for correspondence.
Email: centrforward@mail.ru
ORCID iD: 0000-0003-3774-2879

Cand. Sci. (Med.)

Russian Federation, Moscow

References

  1. Цветкова Л.А., Черченко О.В. Технология больших данных в медицине и здравоохранении России и мира. Врач и информационные технологии. 2016;3. Режим доступа: https://cyberleninka.ru/article/n/tehnologiya-bolshih-dannyh-v-meditsine-i-zdravoohranenii-rossii-i-mira. Ссылка активна на 29.04.2023 [Tsvetkova LA, Cherchenko OV. Big data technology in medicine and healthcare in Russia and the world. Doctor and Information Technology. 2016;3. Available at: https://cyberleninka.ru/article/n/tehnologiya-bolshih-dannyh-v-meditsine-i-zdravoohranenii-rossii-i-mira. Accessed: 29.04.2023(in Russian)].
  2. Корнев М.С. История понятия «большие данные» (Big Data): словари, научная и деловая периодика. Вестник РГГУ. Серия: Литературоведение. Языкознание. Культурология. 2018;1:34. Режим доступа: https://cyberleninka.ru/article/n/istoriya-ponyatiya-bolshie-dannye-big-data-slovari-nauchnaya-i-delovaya-periodika. Ссылка активна на 27.04.2023 [Kornev MS. History of the concept of "big data": dictionaries, scientific and business periodicals. Bulletin of the Russian State University for the Humanities. Series: Literary studies. Linguistics. Cultural studies. 2018;1:34 Available at: https://cyberleninka.ru/article/n/istoriya-ponyatiya-bolshie-dannye-big-data-slovari-nauchnaya-i-delovaya-periodika. Accessed:27.04.2023 (in Russian)].
  3. Vci C, Tekinerdogan B, Athanasiadis IN. Software architecture for big data: a systematic literature review. Big Data Analys. 2020;5. doi: 10.1186/s41044-020-00045-1
  4. Гусев А.В., Владзимирский А.В., Голубев Н.А., Зарубина Т.В. Информатизация здравоохранения Российской Федерации: история и результаты развития. Национальное здравоохранение. 2021;3. Режим доступа: https://cyberleninka.ru/article/n/informatizatsiya-zdravoohraneniya-rossiyskoy-federatsii-istoriya-i-rezultaty-razvitiya. Ссылка активна на 27.04.2023 [Gusev AV, Vladzimirsky AV, Golubev NA, Zarubina TV. Informatization of healthcare in the Russian Federation: history and results of development. National Healthcare. 2021;3. Available at: https://cyberleninka.ru/article/n/informatizatsiya-zdravoohraneniya-rossiyskoy-federatsii-istoriya-i-rezultaty-razvitiya. Accessed: 27.04.2023 (in Russian)].
  5. Povorina AV, Kosinova NN. Digitalization of Healthcare: Domestic and Foreign Experience, Development Trends. 2019. doi: 10.2991/aebmr.k.201205.111
  6. Applied Big Data Analytics: Evolution, Platforms & Tools, Use cases, Benefits, Impact and Paradox' (Big Data Analytics-Series-3 Book 1) Kindle Edition. 2015.
  7. Пилецкая А.В. Искусственный интеллект и большие данные. Молодой ученый. 2019;50(288):20-2. Режим доступа: https://moluch.ru/archive/288/65241/ Ссылка активна на 27.04.2023 [Piletskaya AV. Artificial Intelligence and Big Data. Young Scientist. 2019;50(288):20-2. Available at: https://moluch.ru/archive/288/65241/ Accessed: 27.04.2023 (in Russian)].
  8. Искусственный интеллект: его возможности и виды, развитие и использование. Режим доступа: https://lpgenerator.ru/blog/chto-takoe-iskusstvennyj-intellekt/ Ссылка активна на 27.04.2023 [Artificial intelligence: its capabilities and types, development and use. Available at: https://lpgenerator.ru/blog/chto-takoe-iskusstvennyj-intellekt/ Accessed: 27.04.2023 (in Russian)].
  9. Iqbal MJ, Javed Z, Sadia H, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int. 2021;21:270. doi: 10.1186/s12935-021-01981-1
  10. Сивцов С.Э. Эпистемологические вызовы эпохи Больших данных. МЕТОД: Московский ежегодник трудов из обществоведческих дисциплин. 2015;5. Режим доступа: https://cyberleninka.ru/article/n/epistemologicheskie-vyzovy-epohi-bolshih-dannyh. Ссылка активна на 29.04.2023 [Sivtsov SE. Epistemological challenges of the Big Data era. METHOD: Moscow yearbook of works from social science disciplines. 2015;5. Available at: https://cyberleninka.ru/article/n/epistemologicheskie-vyzovy-epohi-bolshih-dannyh. Accessed: 29.04.2023(in Russian)].
  11. Гусев А.В., Зингерман Б.В., Тюфилин Д.С., Зинченко В.В. Электронные медицинские карты как источник данных реальной клинической практики. Реальная клиническая практика: данные и доказательства. 2022;2(2):8-20 [Gusev AV, Zingerman BV, Tyufilin DS, Zinchenko VV. Electronic medical records as a source of real-world clinical data. Real-World Data & Evidence. 2022;2(2):8-20 (in Russian)].doi: 10.37489/2782-3784-myrwd-13
  12. Никитин П.В., Мурадянц А.А., Шостак Н.А. Мобильное здравоохранение: возможности, проблемы, перспективы. Клиницист. 2015;4. Режим доступа: https://cyberleninka.ru/article/n/mobilnoe-zdravoohranenie-vozmozhnosti-problemy-perspektivy. Ссылка активна на 06.05.2023 [Nikitin PV, Muradyants AA, Shostak NA. Mobile healthcare: opportunities, problems, prospects. Clinician. 2015;4. Available at: https://cyberleninka.ru/article/n/mobilnoe-zdravoohranenie-vozmozhnosti-problemy-perspektivy. Accessed: 06.05.2023 (in Russian)].
  13. Suter-Crazzolara C. Better Patient Outcomes through Making of Biomedical Big Data, Frontiers in ICT. 2018;5. doi: 10.3389/fict.2018.00030
  14. Литвин А.А., Бурыкин Д.А., Кропинов А.А., Парамзин Ф.Н. Радиомика и анализ текстур цифровых изображений в онкологии (обзор). Современные технологии медицины. 2021;2. Режим доступа: https://cyberleninka.ru/article/n/radiomika-i-analiz-tekstur-tsifrovyh-izobrazheniy-v-onkologii-obzor. Ссылка активна на 06.05.2023 [Litvin AA, Burykin DA, Kropinov AA, Paramzin FN. Radiomics and texture analysis of digital images in oncology (review). Modern Technologies of Medicine. 2021;2. Available at: https://cyberleninka.ru/article/n/radiomika-i-analiz-tekstur-tsifrovyh-izobrazheniy-v-onkologii-obzor. Accessed: 06.05.2023 (in Russian)].
  15. Willems S, Abeln S, Feenstra K, et al. The potential use of big data in oncology. Oral Oncol. 2019;98:8-12. doi: 10.1016/j.oraloncology.2019.09.003
  16. Карпов О.Э., Субботин С.А., Шишканов Д.В. Использование медицинских данных для создания систем поддержки принятия врачебных решений. Врач и информационные технологии. 2019;2. Режим доступа: https://cyberleninka.ru/article/n/ispolzovanie-meditsinskih-dannyh-dlya-sozdaniya-sistem-podderzhki-prinyatiya-vrachebnyh-resheniy. Ссылка активна на 06.05.2023 [Karpov OE, Subbotin SA, Shishkanov DV. Using medical data to create systems to support medical decision-making. Doctor and Information Technology. 2019;2. Available at: https://cyberleninka.ru/article/n/ispolzovanie-meditsinskih-dannyh-dlya-sozdaniya-sistem-podderzhki-prinyatiya-vrachebnyh-resheniy. Accessed: 06.05.2023 (in Russian)].
  17. Mayer MA, Heinrich AG, Sasaki F, et al. Big Data Technologies in Healthcare. Needs, opportunities and challenges. Big Data Value Association (BDVA). 2016. doi: 10.13140/RG.2.2.35249.89448
  18. Костюк С.А. Предиктивная медицина и методы генетического тестирования. Медицинские новости. 2016;4(259). Режим доступа: https://cyberleninka.ru/article/n/prediktivnaya-meditsina-i-metody-geneticheskogo-testirovaniya. Ссылка активна на 06.05.2023 [Kostyuk SA. Predictive medicine and methods of genetic testing. Medical News. 2016;4(259). Available at: https://cyberleninka.ru/article/n/prediktivnaya-meditsina-i-metody-geneticheskogo-testirovaniya. Accessed:06.05.2023 (in Russian)].
  19. Wan N, Weinberg D, Liu T-Y, et al. Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA. BMC Cancer. 2019;19(1):832.
  20. Anzar I, Sverchkova A, Stratford R, Clancy T. NeoMutate: an ensemble machine-learning framework for the prediction of somatic mutations in cancer. BMC Med Genomics. 2019;12(1):63.
  21. Новикова Е.И., Снигирева Г.П. Секвенирование «Нового поколения» (NGS): применение для молекулярно-генетических исследований в онкологии. Вестник РНЦРР. 2016;1. Режим доступа: https://cyberleninka.ru/article/n/sekvenirovanie-novogo-pokoleniya-ngs-primenenie-dlya-molekulyarno-geneticheskih-issledovaniy-v-onkologii. Ссылка активна на 07.05.2023 [Novikova EI, Snigireva GP. New Generation Sequencing (NGS): Application for Molecular Genetic Research in Oncology. Bulletin of the Russian Scientific Center of Roentgenology and Radiology. 2016;1. Available at: https://cyberleninka.ru/article/n/sekvenirovanie-novogo-pokoleniya-ngs-primenenie-dlya-molekulyarno-geneticheskih-issledovaniy-v-onkologii. Accessed: 07.05.2023 (in Russian)].
  22. Бархатов И.М., Предеус А.В., Чухловин А.Б. Секвенирование нового поколения и области его применения в онкогематологии. Онкогематология. 2016;4. Режим доступа: https://cyberleninka.ru/article/n/sekvenirovanie-novogo-pokoleniya-i-oblasti-ego-primeneniya-v-onkogematologii. Ссылка активна на 07.05.2023 [Barkhatov IM, Predeus AV, Chuklovin AB. Next-generation sequencing and its applications in oncohematology. Oncohematology. 2016;4. Available at: https://cyberleninka.ru/article/n/sekvenirovanie-novogo-pokoleniya-i-oblasti-ego-primeneniya-v-onkogematologii. Accessed: 07.05.2023 (in Russian)].
  23. Огнерубов Н.А., Шатов А.В., Шатов И.А. Радиогеномика и радиомика в диагностике злокачественных опухолей: обзор литературы. Вестник российских университетов. Математика. 2017;6-2. Режим доступа: https://cyberleninka.ru/article/n/radiogenomika-i-radiomika-v-diagnostike-zlokachestvennyh-opuholey-obzor-literatury. Ссылка активна на 06.05.2023 [Ognerubov NA, Shatov AV, Shatov IA. Radiogenomics and radiomics in the diagnostics of malignant tumors: a literature review. Bulletin of Russian Universities. Mathematics. 2017;6-2. Available at: https://cyberleninka.ru/article/n/radiogenomika-i-radiomika-v-diagnostike-zlokachestvennyh-opuholey-obzor-literatury. Accessed: 06.05.2023 (in Russian)].
  24. Врач, рак и нейросеть. Как применяется искусственный интеллект в онкодиагностике. 2018. Режим доступа: https://sk.ru/news/vrach-rak-i-neyroset-kak-primenyaetsya-iskusstvennyy-intellekt-v-onkodiagnostike/ Ссылка активна на 13.05.2023 [Doctor, cancer and neural network. How artificial intelligence is used in oncodiagnostics. 2018. Available at: https://sk.ru/news/vrach-rak-i-neyroset-kak-primenyaetsya-iskusstvennyy-intellekt-v-onkodiagnostike/ Accessed: 13.05.2023 (in Russian)].
  25. Как нейросети помогают бороться с раком. Режим доступа: https://vc.ru/ml/130227-kak-neyroseti-pomogayut-borotsya-s-rakom. Ссылка активна на 07.06. 2023 [How neural networks help fight cancer. Available at: https://vc.ru/ml/130227-kak-neyroseti-pomogayut-borotsya-s-rakom. Accessed: 07.06. 2023 (in Russian)].
  26. Аксенова Е.И., Горбатов С.Ю. Анализ программ и инициатив в области предиктивной медицины, таргетной профилактики и риск-профилирования пациентов. М.: ГБУ «НИИОЗММ ДЗМ, 2022. Режим доступа: https://niioz.ru/moskovskaya-meditsina/izdaniya-nii/obzory. Ссылка активна на 14.09.2024 [Aksenova EI, Gorbatov SYu. Analysis of programs and initiatives in the field of predictive medicine, targeted prevention and risk profiling of patients M.: State Budgetary Institution "Research Institute of Health Protection of the City of Moscow, 2022. Available at: https://niioz.ru/moskovskaya-meditsina/izdaniya-nii/obzory. Accessed: 14.09.2024 (in Russian)].
  27. Аюпов И.Р., Гончаров В.А., Лукьянов И.В. Нейросетевой метод для прогнозирования состояния больного. Известия вузов. Электроника. 2013;5(103). Режим доступа: https://cyberleninka.ru/article/n/neyrosete-voy-metod-dlya-prognozirovaniya-sostoyaniya-bolnogo. Ссылка активна на 08.05.2023 [Ayupov IR, Goncharov VA, Lukyanov IV. Neural network method for predicting the patient's condition. News of universities. Electronics. 2013;5(103). Available at: https://cyberleninka.ru/article/n/neyrosete-voy-metod-dlya-prognozirovaniya-sostoyaniya-bolnogo. Accessed: 08.05.2023 (in Russian)].
  28. OneCell – комплексная платформа с ИИ для диагностики онкозаболеваний. 2021. Режим доступа: https://vc.ru/tribuna/219204-onecell-kompleksnaya-platforma-s-ii-dlya-diagnostiki-onkozabolevaniy. Ссылка активна на 13.05.2023 [OneCell – a comprehensive AI platform for cancer diagnostics. 2021. Available at: https://vc.ru/tribuna/219204-onecell-kompleksnaya-platforma-s-ii-dlya-diagnostiki-onkozabolevaniy. Accessed: 13.05.2023 (in Russian)].
  29. Погонцева Е. В России разработали IT-решение для выявления людей с высоким онкологическим риском. Медвестник. 2022. Режим доступа: https://medvestnik.ru/content/news/V-Rossii-razrabotali-IT-reshenie-dlya-vyyavleniya-ludei-s-vysokim-onkologicheskim-riskom.html. Ссылка активна на 13.05.2023 [Pogontseva E. Russia has developed an IT solution to identify people with a high cancer risk. Medvestnik. 2022. Available at: https://medvestnik.ru/content/news/V-Rossii-razrabotali-IT-reshenie-dlya-vyyavleniya-ludei-s-vysokim-onkologicheskim-riskom.html. Accessed: 13.05.2023 (in Russian)].
  30. Shah M, Naik N, Somani BK, Hameed BMZ. Artificial intelligence (AI) in urology-Current use and future directions: An iTRUE study. Turk J Urol. 2020;46(Supp. 1): S27-S39.doi: 10.5152/tud.2020.20117
  31. Pai RK, Van Booven DJ, Parmar M, et al. A review of current advancements and limitations of artificial intelligence in genitourinary cancers. Am J Clin Exp Urol. 2020;8(5):152-162.
  32. Ström P, Olsson H, Solorzano L, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 2020;21:222-32. doi: 10.1016/S1470-2045(19)30738-7
  33. Deng K, Li H, Guan Y. Treatment Stratification of Patients with Metastatic Castration-Resistant Prostate Cancer by Machine Learning. iScience. 2020;23(2):100804.doi: 10.1016/j.isci.2019.100804
  34. Porpiglia F, Checcucci E, Amparore D, et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D™) technology: a radiological and pathological study. BJU Int. 2019;123(5):834-45. doi: 10.1111/bju.14549.
  35. Alexa R, Kranz J, Kuppe C, et al. Künstliche Intelligenz in der Urologie – Chancen und Möglichkeiten. Urologie. 2023;62(4):383-8. doi: 10.1007/s00120-023-02026-3
  36. Baessler B, Nestler T, Pinto dos Santos D, et al. Radionics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection. Eur Radiol. 2020;30:2334-45. doi: 10.1007/s00330-019-06495-z
  37. Catto JW, Linkens DA, Abbod MF, et al. Artificial intelligence in predicting bladder cancer outcome: a comparison of neuro-fuzzy modeling and artificial neural networks. Clin Cancer Res. 2003;9(11):4172-7.
  38. Abbod MF, Linkens DA, Catto JW, Hamdy FC. Comparative study of intelligent models for the prediction of bladder cancer progression. Oncol Rep. 2006;15 Spec no.:1019-22. doi: 10.3892/or.15.4.1019
  39. Catto JW, Abbod MF, Wild PJ, et al. The application of artificial intelligence to microarray data: identification of a novel gene signature to identify bladder cancer progression. Eur Urol. 2010;57(3):398-406. doi: 10.1016/j.eururo.2009.10.029
  40. Woerl AC, Eckstein M, Geiger J, et al. Deep Learning Predicts Molecular Subtype of Muscle-invasive Bladder Cancer from Conventional Histopathological Slides. Eur Urol. 2020;78(2):256-64. doi: 10.1016/j.euro.2020.04.023
  41. Coy H, Hsieh K, Wu W, et al. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Abdom Radiol (NY). 2019;44(6):2009-20. doi: 10.1007/s00261-019-01929-0
  42. Kocak B, Yardimci AH, Bektas CT, et al. Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation. Eur J Radiol. 2018;107:149-57. doi: 10.1016/j.ejrad.2018.08.014
  43. Lin F, Cui EM, Lei Y, Luo LP. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma. Abdom Radiol (NY). 2019;44(7):2528-34. doi: 10.1007/s00261-019-01992-7
  44. Buchner A, Kendlbacher M, Nun P, et al. Outcome assessment of patients with metastatic renal cell carcinoma under systemic therapy using artificial neural networks. Clin Genitourin Cancer. 2012;10(1):37-42. doi: 10.1016/j.clgc.2011.10.001

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».