Taxanes induced peripheral neuropathy: mechanism of development and pharmacogenetic factors

Cover Page

Cite item

Full Text

Abstract

For decades taxanes are used as a part of classical schemes for treatment of malignant tumors of various localizations including breast cancer. Peripheral neuropathy is an adverse reaction which impairs both quality of patients’ lives and treatment efficiency. To prevent or reduce the impact of peripheral neuropathy factors contributing to its development and mechanisms that are involved need to be known. This article is a review of the current status of our understanding about the mechanisms underlying the development of taxanes induced peripheral neuropathy.

About the authors

L V Shestakova

Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation

Email: Lyubov_shestakova@list.ru
аспирант каф. онкологии 125993, Russian Federation, Moscow, ul. Barrikadnaia, d. 2/1

D A Sychev

Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation

Email: dimasychev@mail.ru
д-р мед. наук, проф., зав. каф. клинической фармакологии и терапии 125993, Russian Federation, Moscow, ul. Barrikadnaia, d. 2/1

I V Poddubnaya

Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation

акад. РАН, д-р мед. наук, проф., зав. каф. онкологии 125993, Russian Federation, Moscow, ul. Barrikadnaia, d. 2/1

References

  1. Тюляндин С.А., Гарин А.М., Горбунова В.А. Таксаны - новые противоопухолевые препараты растительного происхождения с уникальным механизмом действия. Вестн. РОНЦ им. Н.Н.Блохина РАМН. 1993; 4 (S): 96-101.
  2. Roriguez-Antona C. Pharmacogenomics of paclitaxel. Pharmacogenomics 2010; 11 (5): 621-3.
  3. Krens S.D, McLeod H.L, Hertz D.L. Pharmacogenetics, enzyme probes and therapeutic drug monitoring as potential tools for individualizing taxane therapy. Pharmacogenomics 2013; 14 (5): 555-74.
  4. Jabir S, Naidu R, Azrif Bin Ahmad Annuar M et al. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity. Pharmacogenomics 2012; 13 (16): 1979-88.
  5. Руководство по химиотерапии опухолевых заболеваний. Под ред. Н.И.Переводчиковой, В.А.Горбуновой. 4-е изд., расшир. и доп. М: Практическая медицина, 2015
  6. Kus T, Aktas G, Emin Kalender M et al. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel. OncoTargets and Therapy 2016: 9: 5073-9.
  7. Tanabe Y, Hashimoto K, Shimizu C et al. Paclitaxel-induced peripheral neuropathy in patients receiving adjuvant chemotherapy for breast cancer. Int J Clin Oncol 2013; 132-8.
  8. Eckhoff L, Knoop A.S, Jensen M.B et al. Risk of docetaxel-induced peripheral neuropathy among 1,725 Danish patients with early stage breast cancer. Breast Cancer Res Treat 2013; 142: 109-18.
  9. Leskelä S, Jara C, Leandro-García L.J. et al. Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics J 2011; 11: 121-9.
  10. Корман Д.Б. Мишени и механизмы действия противоопухолевых препаратов. М.: Практическая медицина, 2014; с. 132, 135
  11. Addington J, Freimer M. Chemotherapy-induced peripheral neuropathy: an update on the current understanding [version 1; referees: 2 approved]. F1000Research 2016; 5 (F1000 Faculty Rev): 1466.
  12. Mironov S.L, Ivannikov M.V, Johansson M. [Ca2+] i signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules. From mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J Biol Chem 2005; 280: 715-21.
  13. Canta A, Pozzi E, Alda Carozzi V. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN). Toxics 2015; 3: 198-215.
  14. Flatters S.J, Bennett G.J. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 2006; 122 (3): 245-57.
  15. Evtodienko Y.V, Teplova V.V, Sidash S.S et al. Microtubule-active drugs suppress the closure of the permeability transition pore in tumour mitochondria. FEBS Lett 1996; 39: 86-8.
  16. Kidd J, Pilkington M, Schell M et al. Paclitaxel affects cytosolic Ca2+ signals by opening the mitochondrial permeability transition pore. J Biol Chem 2002; 277: 6504-10.
  17. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87: 99-163.
  18. Baines C.P. The molecular composition of the mitochondrial permeability transition pore. J Mol Cell Cardiol 2009; 46: 850-7.
  19. Carré M et al. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem 2002; 277 (37): 33664-9.
  20. Новиков В.Е., Левченкова О.С. Митохондриальные мишени для фармакологической регуляции адаптации клетки к воздействию гипоксии. Обзоры по клинической фармакологии и лекарственной терапии. 2014; 12 (2): 28-33.
  21. Bernardi P, Krauskopf A, Basso E et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 2006; 273: 2077-99.
  22. Rodi D, Janes R, Sanganee H et al. Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 1999; 285: 197-203.
  23. Peters C.M et al. An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res 2007; 1168: 46-59.
  24. Jabir S, Naidu R, Azrif Bin Ahmad Annuar M et al. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity. Pharmacogenomics 2012; 13 (16): 1979-88.
  25. Hertz D.L. Germline pharmacogenetics of paclitaxel for cancer treatment. Pharmacogenomics 2013; 14 (9): 1065-84.
  26. Baker S.D, Verweij J, Cusatis G.A et al. Pharmacogenetic Pathway Analysis of Docetaxel Elimination. Clin Pharmacol Ther 2009; 85 (2): 155-63.
  27. Li Jing. Pharmacogenomics of drug metabolizing enzymes and transporters: implications for cancer therapy. Pharmacogenomics and Personalized Medicine 2011; 11-33.
  28. Bosch T.M, Huitema A.D, Doodeman V.D. et al. Pharmacogenetic screening of CYP3A and ABCB1in relation to population pharmacokinetics of docetaxel. Clin Cancer Res 2006; 5786-93.
  29. Tran A, Jullien V, Alexandre J et al. Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin Pharmacol Ther 2006; 79 (6): 570-80.
  30. Baker S.D, Verweij J, Cusatis G.A. et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther 2009; 85 (2): 155-63.
  31. Gréen H, Soderkvist P, Rosenberg P et al. Pharmacogenetic studies of paclitaxel in the treatment of ovarian cancer. Basic Clin Pharmacol Toxicol 2009; 104 (2): 130-7.
  32. Henningsson A, Marsh S, Loos W.J et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1polymorphisms with the pharmacokinetics of paclitaxel. Clin Cancer Res 2005; 11(22): 8097-104.
  33. Bergmann T.K, Brasch-Andersen C, Gréen H et al. Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J 2011; 11 (2): 113-20.
  34. Fransson M.N, Gréen H, Litton J.E, Friberg L.E. Influence of Cremophor EL and genetic polymorphisms on the pharmacokinetics of paclitaxel and its metabolites using a mechanismbased model. Drug Metab Dispos 2011; 39 (2): 247-55.
  35. Marsh S, Somlo G, Li X et al. Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J 2007; 7 (5): 362-5.
  36. Hertz D.L. Roy S, Motsinger-Reif A.A et al. CYP2C8*3 increases risk of neuropathy in breast cancer patients treated with paclitaxel. Ann Oncol 2013; 24 (6): 1472-8.
  37. Hertz D.L. Motsinger-Reif A.A, Drobish A et al. CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res Treat 2012; 134 (1): 401-10.
  38. Abraham J.E, Guo Q, Dorling L et al. Replication of genetic polymorphisms reported to be associated with taxane-related sensory neuropathy in patients with early breast cancer treated with Paclitaxel. Clin Cancer Res 2014; 20 (9): 2466-75.
  39. Rizzo R, Spaggiari F, Indelli M et al. Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. Breast Cancer Res Treat 2010; 124 (2): 593-8.
  40. Chang H, Rha S.Y, Jeung H.C et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann Oncol 2009; 20 (2): 272-7.

Copyright (c) 2018 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies