Применение комбинированных режимов терапии в лечении метастатического почечно-клеточного рака

Обложка

Цитировать

Полный текст

Аннотация

Почечно-клеточный рак (ПКР) является одним из наиболее распространенных заболеваний в онкоурологии. Несмотря на улучшение методов диагностики, практически у 1/3 больных раком почки при начальном обследовании выявляют отдаленные метастазы, что обусловливает крайне высокие показатели смертности от данной онкопатологии. Долгие годы лечение запущенных форм ПКР являлось малоэффективным. Стандартные режимы химиотерапии с включением фторпиримидинов и противоопухолевых антибиотиков, цитокиновая терапия с применением интерлейкина-2 и интерферона α лишь незначительно продлевали жизнь пациентам, вызывая при этом выраженные токсико-анемические побочные явления. Попытки лечения опухоли с помощью лучевой терапии также потерпели неудачу и нашли свое применение только в симптоматической терапии отдаленных метастазов. Появление ингибиторов тирозинкиназы (ИТК) позволило получить действительно значимые результаты в лечении метастатического ПКР (мПКР). Так, знаковым событием стала регистрация ИТК – сунитиниба, а затем сорафениба, пазопаниба, акситиниба, ленватиниба, кабозантиниба и ингибиторов мишени рапамицина у млекопитающих (mTOR): эверолимуса и темсиролимуса. Последующее применение комбинаций бевацизумаба с низкими дозами интерферона α и ленватиниба с эверолимусом позволило улучшить показатели безрецидивной выживаемости и частоты объективных ответов, однако способствовало развитию нежелательных явлений (НЯ) на фоне терапии. Следующей ступенью в терапии ПКР стала регистрация Управлением по контролю пищевых продуктов и лекарств в США в апреле 2018 г. комбинации иммуноонкологических препаратов ипилимумаба и ниволумаба для лечения мПКР. В последующем зарегистрированы комбинации ингибиторов иммунных контрольных точек с таргетными препаратами, что не только позволило увеличить продолжительность жизни больных, но и снизило развитие НЯ противоопухолевой терапии. Одной из наиболее эффективных является комбинация ИТК – акситиниба или ленватиниба с ингибитором PD-1 пембролизумабом. Данная статья посвящена обзору текущих успехов в лечении пациентов с мПКР, рассмотрены результаты завершенных клинических исследований по использованию комбинированного лечения таргетными и иммуноонкологическими препаратами.

Об авторах

Руслан Александрович Зуков

ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Минздрава России; КГБУЗ «Красноярский краевой онкологический диспансер им. А.И. Крыжановского»

Автор, ответственный за переписку.
Email: zukov_rus@mail.ru
ORCID iD: 0000-0002-7210-3020

д-р мед. наук, проф., каф. онкологии и лучевой терапии с курсом ПО; гл. врач

Россия, Красноярск; Красноярск

Денис Владимирович Черняев

ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Минздрава России; КГБУЗ «Красноярский краевой онкологический диспансер им. А.И. Крыжановского»

Email: denisonco@mail.ru
ORCID iD: 0000-0002-4625-9531

ассистент каф. онкологии и лучевой терапии с курсом ПО; онколог-радиотерапевт

Россия, Красноярск; Красноярск

Александра Руслановна Зулкайдарова

ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Минздрава России

Email: alexzulkaydarova@mail.ru
ORCID iD: 0000-0002-1114-0493

студентка

Россия, Красноярск

Список литературы

  1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492
  2. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019 [Kaprin AD, Starinskii VV, Petrova GV. Zlokachestvennye novoobrazovaniia v Rossii v 2018 godu (zabolevaemost' i smertnost'). Moscow: MNIOI im. PA Gertsena − filial FGBU “NMITs radiologii” Minzdrava Rossii, 2019 (in Russian)].
  3. Abe H, Kami T. Recent advances in the treatment of metastatic renal cell carcinoma. Int J Urol. 2013;20(10):944-55. doi: 10.1111/iju.12187
  4. Méjean A, Ravaud A, Thezenas S, et al. Sunitinib alone or after nephrectomy in metastatic renal-cell carcinoma. N Engl J Med. 2018;379:417-27.
  5. Buti S, Brighenti M, Bongiovanni C, et al. Role of chemotherapy with gemcitabine plus 5-fluorouracil and chemoimmunotherapy in metastatic renal cell cancer (mRCC). J Immunother. 1997;30(7):780-6. doi: 10.1097/CJI.0b013e31814fb2ec
  6. Носов Д.А., Ворошилова Е.А., Саяпина М.С. Современное представление об алгоритме лекарственного лечения и оптимальной последовательности использования таргетных препаратов. Онкоурология. 2014;(3):12-21 [Nosov DA, Voroshilova EA, Sayapina MS. Current idea of an algorithm for drug treatment and optimal succession of using targeted drugs. Cancer Urology. 2014;10(3):12-21 (in Russian)].
  7. Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med. 1971;133(2):275-88. doi: 10.1084/jem.133.2.275
  8. Jet M, Henkel C, Schuchardt M, Tolle M. Anti-VEGF Drugs in Eye Diseases: Local Therapy with Potential Systemic Effects. Curr Pharm Des. 2015;21(24):3548-56. doi: 10.2174/1381612821666150225120314
  9. Motzer RJ, Hutson TE, Tomczak P, et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27(22):3584-590. doi: 10.1200/JCO.2008.20.1293
  10. Norden AD, Drappatz J, Wen PY. Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol. 2009;5(11):610-20. doi: 10.1038/nrneurol.2009.159
  11. Miletic H, Niclou SP, Johansson M, Bjerkvig R. Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms. Expert Opin Ther Targets. 2009;13(4):455-68. doi: 10.1517/14728220902806444
  12. di Tomaso E, London N, Fuja D, et al. P DGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment. PLoS One. 2009;4(4):е5123.
  13. Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83-95.
  14. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nature reviews. Cancer. 2008;8(8):592-603. doi: 10.1038/nrc2442
  15. Guislain A, Gadiot J, Kaiser A, et al. Sunitinib pretreatment improves tumor-infiltrating lymphocyte expansion by reduction in intratumoral content of myeloid-derived suppressor cells in human renal cell carcinoma. Cancer Immunol Immunother. 2015;64(10):1241-50. doi: 10.1007/s00262-015-1735-z
  16. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115-24.
  17. European Medicines Agency. Votrient (pazopanib) 200 mg filmcoated tablet: summary of product characteristics. 2016. Available at: http: //www.ema.europa.eu. Accessed: 07.11.2016.
  18. Novartis Pharmaceuticals Corporation. Votrient (pazopanib) tablets: US prescribing information. 2016. Available at: https: //www.pharma.us.novartis.com. Accessed: 07.11.2016.
  19. Kumar R, Crouthamel MC, Rominger DH, et al. Myelosuppression and kinase selectivity of multikinase angiogenesis inhibitors. Br J Cancer. 2009;101(10):1717-23.
  20. Beaumont JL, Salsman JM, Diaz J, et al. Quality adjusted time without symptoms or toxicity analysis of pazopanib versus sunitinib in patients with renal cell carcinoma. Cancer. 2016;122(7):1108-15.
  21. Sonpavde G, Hutson TE, Rini BI. Axitinib for renal cell carcinoma. Expert Opin Investig Drugs. 2008;17:741-8.
  22. Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378:1931-9.
  23. Motzer RJ, Escudier B, Powles T, et al. Long-term follow-up of overall survival for cabozantinib versus everolimus in advanced renal cell carcinoma. Br J Cancer. 2018;118(9):1176-8.
  24. Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370(9605):2103-11. doi: 10.1016/S0140-6736(07)61904-7
  25. Rini BI, Halabi S, Rosenberg JE, at al. Phase III trial bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28(13):2137-43. doi: 10.1200/JCO.2009.26.5561; PMID: 20368558
  26. Coulie P, Van den Eynde BJ, van der Bruggen P, Boon T. Tumor antigens recognized by T-lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14:135-46.
  27. Champiat S, Dercle L, Ammari S, et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res. 2017;23(8):1920-8.
  28. Deleuze A, Deleuze A, Saout J, et al. Immunotherapy in Renal Cell Carcinoma: The Future Is Now. Int J Mol Sci. 2020;21(7):25-32. doi: 10.3390/ijms21072532
  29. Kammerer-Jacquet SF, Deleuze A, Saout J, et al. Targeting the PD-1/PD-L1 Pathway in Renal Cell Carcinoma. Int J Mol Sci. 2019;20(7):1692. doi: 10.3390/ijms20071692
  30. Davies M, Duffield EA. Safety of checkpoint inhibitors for cancer treatment: strategies for patient monitoring and management of immune-mediated adverse events. Immunotargets Ther. 2017;6:51-71.
  31. Wang Y, Zhou S, Yang F, et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol. 2019;5(7):1008-19. doi: 10.1001/jamaoncol.2019.0393
  32. Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2019;380:1103-15. doi: 10.1056/NEJMoa1816047
  33. Linsley PS, Wallace PM, Johnson J, et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science. 1992;257(5071):792-5. doi: 10.1126/science.1496399
  34. Wolchok JD, Saenger Y. The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist. 2008;13(4):2-9. doi: 10.1634/theoncologist.13-S4-2
  35. Motzer RJ, Jeon YK, Cho YM, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803-13. doi: 10.1056/NEJMoa1510665
  36. Greulich H, Chen TH, Feng W, et al. Oncogenic transformation by inhibitor-sensitive and-resistant EGFR mutants. PLoS Med. 2005;2:e313.
  37. Sternberg CN, Davis ID, Mardiak J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28(6):1061-8.
  38. Liu XD, Hang A, Zhou L, et al. Resistance to antiangiogenic therapy is associated with an immunosuppressive tumor microenvironment in metastatic renal cell carcinoma. Cancer Immunol Res. 2015;3(9):1017-29.
  39. Shin SJ, Jeon YK, Cho YM, et al. The association between PD-L1 expression and the clinical outcomes to vascular endothelial growth factor-targeted therapy in patients with metastatic clear cell renal cell carcinoma. Oncologist. 2015;20(11):1253-60.
  40. Flaherty KT, Manola JB, Pins M, et al. BEST: A randomized Phase II study of vascular endothelial growth factor, RAF kinase, and mammalian target of rapamycin combination targeted therapy with bevacizumab, sorafenib, and temsirolimus in advanced renal cell carcinoma – A Trial of the ECOG-ACRIN Cancer Research Group (E2804). J Clin Oncol. 2015;33(21):2384-91. doi: 10.1200/JCO.2015.60.9727
  41. Bukowski RM, Kabbinavar FF, Figlin RA, et al. Randomized phase II study of erlotinib combined with bevacizumab compared with bevacizumab alone in metastatic renal cell cancer. J Clin Oncol. 2007;25:4536-41.
  42. Hainsworth JD, Spigel DR, Burris HA, et al. Phase II trial of bevacizumab and everolimus in patients with advanced renal cell carcinoma. J Clin Oncol. 2010;28(13):2131-6.
  43. Ravaud A, Barrios S, Anak O, et al. Randomized phase II study of first-line everolimus (EVE)+ bevacizumab (BEV) versus interferon alfa-2a (IFN)+ BEV in patients (pts) with metastatic renal cell carcinoma (mRCC): RECORD-2. Ann Oncol. 2012;23:ix258.
  44. Rini BI, Bellmunt J, Clancy J, et al. Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J Clin Oncol. 2014;32(8):752-9. doi: 10.1200/JCO.2013.50.5305
  45. Negrier, Gravis G, Pérol D, et al. Temsirolimus and bevacizumab, or sunitinib, or interferon alfa and bevacizumab for patients with advanced renal cell carcinoma (TORAVA): a randomised phase 2 trial. Lancet Oncol. 2011;12(7):673-80.
  46. Motzer RJ, Hutson TE, Glen H, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal-cell carcinoma: a randomized, phase II, open-label, multicenter trial. Lancet Oncol. 2015;16(15):1473-82. doi: 10.1016/S1470-2045(15)00290-9
  47. Tohyama O, Matsui J, Kodama K, et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014;(638747):1-13.
  48. Yamamoto Y, Matsui J, Matsushima T, et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell. 2014;6(1):1-13.
  49. Ho TH, Liu XD, Huang Y, et al. The impact of FGFR1 and FRS2α expression on sorafenib treatment in metastatic renal cell carcinoma. BMC cancer. 2015;15(1):1-7.
  50. Touat M, Ileana E, Postel-Vinay S, et al. Targeting FGFR signaling in cancer. Clin Cancer Res. 2015;21(12):2684-94.
  51. Shin SJ, Jeon YK, Cho YM, et al. The association between PD-L1 expression and the clinical outcomes to vascular endothelial growth factor-targeted therapy in patients with metastatic clear cell renal cell carcinoma. Oncologist. 2015;20(11):1253-60. doi: 10.1634/theoncologist.2015-0151
  52. Motzer RJ, Powles T, Atkins MB, et al. Final overall survival and molecular analysis in IMmotion151, a phase 3 trial comparing atezolizumab plus bevacizumab vs sunitinib in patients with previously untreated metastatic renal cell carcinoma. JAMA Oncol. 2022;8(2):275-80. doi: 10.1001/jamaoncol.2021.5981
  53. Powles T, Plimarck ER, Stus V, et al. Pembrolizumab (pembro) plus axitinib (axi) versus sunitinib as first-line therapy for locally advanced or metastatic renal cell carcinoma (mRCC): phase III KEYNOTE-426 study. J Clin Oncol. 2019;37(Suppl. 7S):abstr.543.
  54. Lee CH, Shah AY, Rasco D, et al. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (Study 111/KEYNOTE-146): a phase 1b/2 study. Lancet Oncol. 2021;22(7):946-58. doi: 10.1016/S1470-2045(21)00241-2
  55. McDonald R. CLEAR study readout shows survival enhancement with lenvatinib plus pembrolizumab versus sunitinib in frontline RCC. Conference ASCO Genitourinary Cancers Symposium. February 14, 2021.
  56. Choueiri TK, Powles T, Burotto M, et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2021;384:829-41. doi: 10.1056/NEJMoa2026982
  57. Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277-90. doi: 10.1056/NEJMoa1712126

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Комбинированный механизм действия ингибиторов тирозинкиназы и иммуноонкологических препаратов.

Скачать (223KB)
3. Рис. 2. Исследование CLEAR III фазы. ОВ и длительность ответа: a – кривые Каплана−Мейера для ОВ; b – кривые Каплана−Мейера для длительности ответа у пациентов, достигших ответов. Засечки соответствуют цензурированию данных. Обозначение «NE» говорит о невозможности расчетной оценки, а «NR» – о том, что показатель не был достигнут.

Скачать (335KB)

© ООО "Консилиум Медикум", 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».