Advancing efficiency of a drilling rig electrical system with a battery energy storage system

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The article considers an inner current control loop design for a grid inverter of the battery energy storage system. For this purpose, a well-known methodology of subordinate control system design is used. According to this methodology the controller coefficients can be determined based on analytical findings. This approach will help prevent indefiniteness during the practical implementation of the automatic control system of grid inverter. The aim of the work is to advancing efficiency of the electrical system of a drilling rig with a battery energy storage system under peak load conditions. The problem of analytical determination of the coefficients of regulators in the automatic control system of a grid inverter has been solved. The structure of the automatic regulation system has been proposed. The efficiency of the automatic control system for the grid inverter is verified by the numerical indicators of the transient process quality obtained in this article.

Авторлар туралы

Valeriy Sushkov

Industrial University of Tyumen

Хат алмасуға жауапты Автор.
Email: sushkovvv@gray-nv.ru
SPIN-код: 1060-8949
Scopus Author ID: 55971218900

Doctor of Technical Sciences, Professor, Professor of the Electrical Power Engineering and Electrical Engineering Department

Ресей, Tyumen

Vladimir Goryunov

Omsk State Technical University

Email: vladimirgoryunov2016@yandex.ru
SPIN-код: 2765-2945
Scopus Author ID: 7003455231

Doctor of Technical Sciences, Professor, Head of the Power Supply for Industrial Enterprises Department

 

Ресей, Omsk

Egor Revyakin

Industrial University of Tyumen

Email: revyakin.egor.ev@gmail.com
SPIN-код: 3627-6031

Assistant of the Electrical Power Engineering and Electrical Engineering Department

Ресей, Tyumen

Әдебиет тізімі

  1. Gazizova O. V., Morshchakin A. E., Varganov D. E. [et al.]. Razrabotka meropriyatiy po obespecheniyu ustoychivosti promyshlennoy elektrostantsii s rezkoperemennoy nagruzkoy [Development of Measures to Ensure Sustainability of Industrial Power Plant with Variable Load]. Elektrotekhnicheskie sistemy i kompleksy. Electro Technical Systems and Complexes. 2024. No. 1 (62). P. 26–32. doi: 10.18503/2311-8318-2024-1(62)-26-32. EDN: MTLZLU. (In Russ.).
  2. Razzhivin I. A., Suvorov A. A., Andreev M. V. [et al.]. Obzor matematicheskikh modeley sistem nakopleniya energii dlya modelirovaniya elektroenergeticheskikh sistem. Chast’ I [A review of mathematical models of energy storage systems for electric power systems simulation. Part I]. Izvestiya RAN. Energetika. Proceedings of the Russian Academy of Sciences. Power Engineering. 2023. No. 2. P. 58–80. doi: 10.31857/S000233102302005X. EDN: JZIZSY. (In Russ.).
  3. Kosarev B. A., Koshchuk G. A., Lazarev D. V. [et al.]. Sposoby podderzhaniya znacheniy napryazheniya i chastoty v dopustimykh predelakh v usloviyakh raspredelennoy generatsii pri rezkoperemennom kharaktere nagruzki potrebitelya [Methods for maintaining voltage and frequency values within acceptable limits in conditions of distributed generation with a sharply variable nature of the load of the consumer]. Elektrotekhnicheskiye i informatsionnyye kompleksy i sistemy. Electrical and Data Processing Facilities and Systems. 2023. Vol. 19, no. 3. P. 64–73. doi: 10.17122/1999-5458-2023-19-3-64-73. EDN: NZWJYZ. (In Russ.)
  4. Bachurin P. A., Gladkov D. S., Zyryanov V. M. [et al.]. Ispytaniya promyshlennogo obraztsa sistemy nakopleniya energii SNE-10-1200-400 pri sovmestnoy rabote s GPU v sostave eksperimental’noy energosistemy [Testing of industrial design energy storage system (ess-101200-400) and gas piston units in experimental power system]. Elektroenergiya. Peredacha i raspredeleniye. Electric power. Transmission and Distribution. 2020. No. 2 (59). P. 18–25. EDN: WFLZYQ. (In Russ.).
  5. Engels J., Claessens B., Deconinck G. Optimal combination of frequency control and peak shaving with battery storage systems. IEEE Transactions on Smart Grid. 2020. Vol. 11, no. 4. P. 3270–3279. doi: 10.1109/TSG.2019.2963098. (In Engl.).
  6. Ilyushin P. V., Kulikov A. L., Berezovskiy P. K. Effektivnoye ispol’zovaniye nakopiteley elektricheskoy energii dlya predotvrashcheniya otklyucheniy ob”yektov raspredelennoy generatsii pri kratkovremennykh otkloneniyakh chastoty [Effective application of electric energy storage for prevention of distributed generation units tripping due to short-time frequency deviations]. Releynaya zashchita i avtomatizatsiya. Relay Protection and Automation. 2019. No. 4. P. 32–39. EDN: JSSGMJ. (In Russ.).
  7. Chervonchenko S. S., Frolov V. Ya. Povysheniye energoeffektivnosti avtonomnoy sistemy elektrosnabzheniya burovoy ustanovki pri provalakh napryazheniya [Increasing the energy efficiency of an autonomous power supply system of a drillingrig in case of voltage dips]. Zapiski Gornogo instituta. Journal of Mining Institute. 2023. Vol. 261. P. 470–478. EDN: MGAPVA. (In Russ.).
  8. Fedotov A. I., Fedotov E. A., Abdullazyanov A. F. Ispol’zovaniye elektrokhimicheskikh nakopiteley energii v sistemakh avtonomnogo elektrosnabzheniya dlya snizheniya raskhoda topliva energoustanovok [Use of electrochemical energy storage systems in autonomous power supply systems to reduce fuel consumption of power installations]. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki. Power Engineering: Research, Equipment, Technology. 2021. Vol. 23, no. 1. P. 3–17. doi: 10.30724/1998-9903-2021-23-1-3-17. EDN: BITFGX. (In Russ.).
  9. Ashtiani N. A., Ali Khajehoddin S., Karimi-Ghartemani M. Optimal design of nested current and voltage loops in grid-connected inverters // 2020 IEEE Applied Power Electronics Conference and Exposition (APEC). New Orleans, 2020. P. 2397–2402. doi: 10.1109/APEC39645.2020.9124405. (In Engl.).
  10. Zhao Z., Han Z., Liu X. [et al.]. Optimal Tuning of the Current Loop for Dual-Loop Controlled Grid-Forming Converters Based on Active Damping Optimization. IEEE Access. 2021. Vol. 9. P. 35801–35813. doi: 10.1109/ACCESS.2021.3061098. (In Engl.).
  11. Yan W., Shah S., Gevorgian V., Gao D. W. Sequence Impedance Modeling of Grid-Forming Inverters // 2021 IEEE Power & Energy Society General Meeting (PESGM). Washington, 2021. P. 1–5. (In Engl.).
  12. Plotnikov Yu. V., Polyakov V. N., Savosina A. A., Shcherbakov D. A. Sglazhivaniye pikovykh nagruzok v chastotno-reguliruyemom elektroprivode tramvaya s sistemoy khraneniya energii na baze superkondensatorov [Smoothing the peak loads in a frequency-controlled tram electric drive with a supercapacitor based energy storage device] // Izvestiya vysshikh uchebnykh zavedeniy. Elektromekhanika. Russian Electromechanics. 2024. Vol. 67, no. 1. P. 21–35. doi: 10.17213/0136-3360-2024-1-21-35. EDN: MYQWKT. (In Russ.).
  13. Shreyner R. T. Sistemy podchinennogo regulirovaniya elektroprivodov [Systems of subordinate regulation of electric drives]. Yekaterinburg, 1997. 279 p. (In Russ.).
  14. Razzhivin I. A., Suvorov A. A., Andreev M. V. [et al.]. Obzor matematicheskikh modeley sistem nakopleniya energii dlya modelirovaniya elektroenergeticheskikh sistem. Chast’ I [A review of mathematical models of energy storage systems for electric power systems simulation. Part I]. Izvestiya RAN. Energetika. Proceedings of the Russian Academy of Sciences. Power Engineering. 2023. No. 3. P. 34–56. doi: 10.31857/S000233102303007X. EDN: TBBYWM. (In Russ.).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).