The use of mathematical model to evaluate the material balance of a solid oxide electrolyser

Cover Page

Cite item

Full Text

Abstract

The effective use of solid oxide electrolysers is a promising solution for the energy sector and industry in general. Therefore, scientists all over the world are conducting research on improving the electrolysers' efficiency and reliability. In this paper, a mathematical model of the material balance for a solid oxide electrolyser is considered, which allows optimizing the operating parameters of existing equipment and newly designed equipment.

In particular, special attention is focused on studying the effect of the operating parameters of electrochemical plants of planar design during electrolysis on the composition of reaction products. The relation between the compositions of reagents at the inlet and products at the outlet is determined on the basis of calculated data for a planar solid oxide electrolyser using mathematical modeling in comparison with experimental data.

About the authors

Anastasia I. Golodnova

Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: a.golodnova@ihte.ru
ORCID iD: 0000-0003-2598-2269
SPIN-code: 3510-7011

Junior Researcher, Laboratory of Electrochemical Devices and Fuel Cells

Russian Federation, Yekaterinburg

Mikhail V. Erpalov

Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Email: m.erpalov@ihte.ru
ORCID iD: 0000-0003-3113-598X
SPIN-code: 6696-3245
Scopus Author ID: 55747315200
ResearcherId: N-7453-2016

Head of the Laboratory of Electrochemical Devices and Fuel Cells

Russian Federation, Yekaterinburg

Anton I. Golodnov

Ural Federal University

Email: a.i.golodnov@urfu.ru
ORCID iD: 0000-0003-2958-310X
Scopus Author ID: 57211929114
ResearcherId: R-3266-2016

Associate Professor of the Foundry Production and Hardening Technologies Department

Russian Federation, Yekaterinburg

References

  1. Chung T. D., Chyou Y. P., Yu D. D. Study of the Flow Field in Channels and Internal Manifolds on the Interconnect of a Planar Solid Oxide Fuel Cell // International Conference on Fuel Cell Science, Engineering and Technology. 2005. Vol. 37645. P. 273–280. doi: 10.1115/FUELCELL2005-74149. (In Engl.).
  2. Demin A. K. Razrabotka tverdooksidnykh elektrokhimicheskikh ustroystv v IVTE UrO RAN [Development of solid oxide electrochemical devices at the Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences]. Fizicheskaya khimiya i elektrokhimiya rasplavlennykh i tverdykh elektrolitov. V 2 t. Physical Chemistry and Electrochemistry of Molten and Solid Electrolytes. In 2 vols. Yekaterinburg, 2013. Vol. 2. P. 78–79. EDN: XFZHFT. (In Russ.).
  3. Rasporyazheniye Pravitel’stva RF ot 9 iyunya 2020 g. № 1523-r «Ob Energeticheskoy strategii RF na period do 2035 g.» [Decree of the Government of the Russian Federation No. 1523-r dated 2020.06.09 «On approval of the Energy Strategy of the Russian Federation for the period up to 2035»]. Available at «Garant». (In Russ.).
  4. Bresler L. Kh., Khayrullina D. M., Oshanina S. D. Utilizatsiya i ulavlivaniye CO2 [CO2 utilization and capture]. Arktika: sovremennyye podkhody k proizvodstvennoy i ekologicheskoy bezopasnosti v neftegazovom sektore. V 2 t. The Arctic: Modern Approaches to Industrial and Environmental Safety in the Oil and Gas Sector. In 2 vols. / Resp. ed. Yu. V. Sivkov. 2023. Vol. 2. P. 36–40. EDN: NTVIIH. (In Russ.).
  5. Sugihara S., Iwai H. Experimental investigation of temperature distribution of planar solid oxide fuel cell: effects of gas flow, power generation, and direct internal reforming. International Journal of Hydrogen Energy. 2020. Vol. 45, no. 46. P. 25227–25239. doi: 10.1016/j.ijhydene.2020.06.033. (In Engl.).
  6. Zhu Q. Developments on CO2-utilization technologies. Clean Energy. 2019. Vol. 3, no. 2. P. 85–100. doi: 10.1093/ce/zkz008. (In Engl.).
  7. Fussler C. Solution for a circular carbon economy // The CO2 Forum Briefing Paper; The CO2 Forum. Lyon, France. 2015. (In Engl.).
  8. Qu Z., Aravind P. V., Dekker N., Janssen A. Modeling of flow field in planar solid oxide fuel cell // ECOS 2008 – Proceedings of the 21th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental impact of energy systems, June 2008, Poland. AGH University of Science & Technology/SUT, 2008. P. 1849–1856. ISBN 978-839-223-81-40. (In Engl.).
  9. Kravchenko K. V. Osobennosti sovremennykh sistem imitatsionnogo modelirovaniya [Features of modern simulation systems]. Innovatsionnyye tekhnologii: teoriya, instrumenty, praktika. Innovative technologies: theory, tools, practice. 2014. Vol. 1. P. 211–214. (In Russ.).
  10. Perfilyev M. V., Demin A. K., Kuzin B. L., Lipilin A. S. Vysokotemperaturnyy elektroliz gazov [High-temperature electrolysis of gases]. Moscow, 1988. 230 p. ISBN 5-02-001399-4. (In Russ.).
  11. Patrov B. V., Sladkov I. B. Fizicheskaya khimiya [Physical Chemistry]. Saint Petersburg, 2003. 188 p. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).