Interval sets in applied geometry
- Autores: Yurkov V.Y.1
-
Afiliações:
- Omsk State Technical University
- Edição: Volume 192, Nº 4 (2024)
- Páginas: 29-34
- Seção: MECHANICAL ENGINEERING
- URL: https://journals.rcsi.science/1813-8225/article/view/279155
- DOI: https://doi.org/10.25206/1813-8225-2024-192-29-34
- EDN: https://elibrary.ru/ORIVTV
- ID: 279155
Citar
Texto integral
Resumo
Geometric modeling of interval sets of multidimensional space is considered. The interval set is determined as a set of k-planes of uncertain interval parameters. Interval parameters may be given by means of interval basis which are k-simplexes having vertex coordinates which are not fully presented (only up to range of values). Geometric images of the sets have combinatorial structure formed by some part of the space and bordered by a set of peace linear hyper-surfaces. Analytic model is a system of interval equations which may be transformed to equations with uncertain parameters. The set of interval parameters generate an interval function and geometric image of it is some domain in parametric space. Analyses of mutual position of all domains allows us to determine the behavior of interval sets. Some properties of interval line sets are considered in detail as examples of the proposed approach.
Sobre autores
Viktor Yurkov
Omsk State Technical University
Autor responsável pela correspondência
Email: viktor_yurkov@mail.ru
ORCID ID: 0000-0003-2667-8103
Código SPIN: 2414-1438
Scopus Author ID: 55857657200
Doctor of Technical Sciences, Professor, Professor of Design and Technology of Light Industry Product Manufacture Department
Rússia, OmskBibliografia
- Moore R. E. Interval analyses. New York: Prentice-Hall, 1966. 400 p. (In Engl.).
- Kalmykov S. A., Shokin Yu. I., Yuldashev Z. Kh. Metody interval’nogo analiza [Methods of interval analyses]. Novosibirsk, 1986. 224 p. (In Russ.).
- Alefel’d G., Khertsberger Yu. Vvedeniye v interval’nyye vychisleniya [Introduction in interval computation]. Moscow, 1987. 356 p. (In Russ.).
- Levin V. I. Teoreticheskiye osnovy issledovaniya interval’nykh funktsiy metodami interval’no-differentsial’nogo ischisleniya [Analysis of interval functions by methods of interval differential calculus] // Sistemy upravleniya, svyazi i bezopasnosti. Systems of Control, Communication and Security. 2016. No. 1. P. 335–350. EDN: VOTNGB. (In Russ.).
- Sharyy S. P., Sharaya I. A. Raspoznavaniye razreshimosti interval’nykh uravneniy i ego prilozheniya k analizudannykh [Recognizing solvability of interval equations and its application to data analysis] // Vychislitel’nyye tekhnologii. Computational Technologies. 2013. Vol. 18, no. 3. P. 80–109. EDN: QYPDSX. (In Russ.).
- Shary S. P. Solving the tolerance problem for interval linear equations // Interval Computation. 1994. No. 2. P. 6–26. (In Engl.).
- Voshchinin A. P. Interval’nyy analiz dannykh: razvitiye i perspektivy [Data interval analyses: development and perspectives] // Zavodskaya laboratoriya. Industrial Laboratory. 2002. Vol. 68, no. 1. P. 118–126. (In Russ.).
- Levin V. I. Interval’nyye uravneniya v zadachakh obrabotki dannykh [Interval equations in problems of data processing] // Zavodskaya laboratoriya. Diagnostika materialov. Industrial Laboratory. Diagnostics of Materials. 2018. Vol. 84, no. 3. P. 73–78. doi: 10.26896/1028-6861-2018-84-3-73-78. EDN: YTZRYA. (In Russ.).
- Yunicheva N. R., Yunicheva R. R. Postroyeniye mnozhestva resheniy sistemy interval’nykh algebraicheskikh uravneniy v zadache sinteza sistem upravleniya ob”yektami s netochnymi dannymi [Construction of the set of solutions of the system of interval algebraic equations in the problem of synthesis of control systems of objects with imprecise data] // Informatika: problemy, metodologiya, tekhnologii. Informatics: Problems, Methodology, Technologies. 2016. P. 258–261. EDN: WNTFSH. (In Russ.).
- Safronov V. V., Vedernikov Yu. V., Shakhova O. A. Vektornaya optimizatsiay slozhnykh tekhnicheskikh system pri neopredelennosti iskhodnykh dannykh [Vector optimization of complex technical systems under undetermined input data] // Informatsionnyye tekhnologii. Information Technology. 2001. No. 2. P. 49–63. (In Russ.).
- Lakeyev A. V., Noskov S. I. O mnozhestve resheniy lineynogo uravneniya s interval’no zadannym operatorom i pravoy chast’yu [On the solution set of a linear equation with the right-hand side and operator given by intervals] // Sibirskiy matematicheskiy zhurnal. Siberian Mathematical Journal. 1994. Vol. 35, no. 5. P. 1074–1084. EDN: UJWFIA. (In Russ.).
- Lakeyev A. V. Sistemy lineynykh interval’nykh uravneniy s konechnym mnozhestvom resheniy [Systems of linear interval equations with finite set of solutions] // Sovremennyye tekhnologii. Sistemnyy analiz. Modelirovaniye. Modern Technologies. System Analysis. Modelling. 2009. No. 3 (23). P. 42–48. EDN: KUFQGH. (In Russ.).
- Tselykh A. N., Timoshenko R. P. Nekotoryye teoretiko-mnozhestvennyye operatsii nad interval’nymi nechetkimi mnozhestvami v modelyakh iskusstvennogo intellekta [Some set-theoretic operations on interval fuzzy sets in artificial intelligence models] // Novosti iskusstvennogo intellekta. Artificial Intelligence News. 2000. No. 3. P. 139–145. (In Russ.).
- Noskov S. I. Tochechnaya kharakterizatsiya mnozhestv resheniy interval’nykh sistem lineynykh algebraicheskikh uravneniy [Point characterization of solution sets of an interval system of linear algebraic equations] // Informatsionnyye tekhnologii i matematicheskoye modelirovaniye v upravlenii slozhnymi sistemami. Information Technology and Mathematical Modeling in the Management of Complex Systems. 2018. No. 1 (1). P. 8–13. EDN: YXRWEP. (In Russ.).
- Levin V. I. Interval’nyye metody optimizatsii sistem v usloviyakh neopredelennosti [Interval method of system optimization in undetermined conditions]. Penza, 1999. 101 p. (In Russ.).
- Kumkov S. I. Obrabotka eksperimental’nykh dannykh ionnoy provodimosti rasplavlennogo elektrolita metodami interval’nogo analiza [Working of experimental data of ionic conduction molten electrolyte by methods of interval analysis] // Rasplavy. Melts. 2010. No. 3. P. 86–96. EDN: MKJTIL. (In Russ.).
- Skibitskiy N. V. Postroyeniye pryamykh I obratnykh staticheskikh kharakteristik ob”yektov po interval’nym dannym [Construction of Direct and Inverse Static Characteristics of the Objects by Interval Data] // Zavodskaya laboratoriya. Diagnostika materialov. Industrial Laboratory. Diagnostics of Materials. 2017. Vol. 83, no. 1–1. P. 87–98. EDN: XUYZGV. (In Russ.).
- Noskov S. I., Vrublevskiy I. P., Zayanchukovskaya V. O. Primeneniye interval’nogo regressionnogo analiza dlya modelirovaniy ob”yektov transporta [Application of interval regression analysis for modelling of transport objects] // Vestnik Ural’skogo gosudarstvennogo universiteta putey soobshcheniya. Herald of the Ural State University of Railway Transport. 2020. No. 3 (47). P. 45–52. doi: 10.20291/2079-0392-2020-3-45-52. EDN: FGLKXR. (In Russ.).
- Yurkov V. Yu. Osnovy sistemy razvitiya I kontrolya vizual’no-algoritmicheskogo myshleniya [Framework of the system of development and control of visual-algorithmic thinking] // Sovremennoye obrazovaniye. Modern Education. 2019. No. 1. P. 72–84. doi: 10.25136/2409-8736.2019.1.26453. (In Russ.).
Arquivos suplementares
