Открытый набор данных для тестирования Visual SLAM-алгоритмов при различных погодных условиях

Обложка

Цитировать

Полный текст

Аннотация

Существующие наборы данных для тестирования SLAM-алгоритмов в открытой местности не подходят для оценки влияния погодных условий на точность локализации. Получить подходящий набор из реального мира трудно из-за длительного периода сбора данных и невозможности исключения динамических факторов среды. Искусственно сгенерированные наборы данных позволяют обойти описанные ограничения, однако на текущий момент исследователи не выделяли тестирование SLAM-алгоритмов при различных погодных условиях как отдельную задачу, несмотря на то, что она является одним из аспектов различия между открытой и закрытой местностями. В данной работе представлен новый открытый набор данных, который состоит из 36 последовательностей движения робота в городской среде или по пересеченной местности, в виде изображений со стереокамеры и истинного положения робота, собранных с частотой 30 Гц. Движение в пределах одной местности происходит по фиксированному маршруту, последовательности отличают только климатические условия, что может позволить корректно оценить влияние погодных явления на точность локализации.

Об авторах

А. В. Подтихов

Санкт-Петербургский Федеральный исследовательский центр Российской академии наук

Email: a.podtikhov@gmail.com
ORCID iD: 0009-0008-3022-5282

А. И. Савельев

Санкт-Петербургский Федеральный исследовательский центр Российской академии наук

Email: saveliev@iias.spb.su
ORCID iD: 0000-0003-1851-2699
SPIN-код: 2514-6489

Список литературы

  1. Olson C.F., Matthies L.H., Schoppers H., Maimone M.W. Robust stereo ego-motion for long distance navigation // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2000, Hilton Head, USA, 15 June 2000). Cat. No. PR00662. IEEE, 2000. Vol. 2. PP. 453‒458. doi: 10.1109/CVPR.2000.854879
  2. Schubert D., Goll T., Demmel N., Usenko V., Stückler J., Cremers D. The TUM VI Benchmark for Evaluating Visual-Inertial Odometry // Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS, Madrid, Spain, 01‒05 October 2018). IEEE, 2018. PP. 1680‒1687. doi: 10.1109/IROS.2018.8593419
  3. Fischler M.A., Bolles R.C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography // Communications of the ACM. 1981. Vol. 24. Iss. 6. PP. 381‒395. doi: 10.1145/358669.358692
  4. Shah S., Dey D., Lovett C., Kapoor A. Airsim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles // Results of the 11th International Conference on Field and Service Robotics (Zurich, Switzerland, 12‒15 September 2017). Springer Proceedings in Advanced Robotics. Cham: Springer, 2018. Vol. 5. PP. 621‒635. doi: 10.1007/978-3-319-67361-5_40
  5. Maddern W., Pascoe G., Newman P. 1 year, 1000 km: The oxford robotcar dataset // The International Journal of Robotics Research. 2017. Vol. 36. Iss. 1. PP. 3‒15. doi: 10.1177/0278364916679
  6. Cordts M., Omran M., Ramos S., Scharwachter T., Enzweiler M., Benenson R., et al. The Cityscapes Dataset. URL: https://markus-enzweiler.de/downloads/publications/cordts15-cvprws.pdf (Accessed 18.01.2024)
  7. Geiger A., Lenz P., Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Providence, USA, 16‒21 June 2012). IEEE, 2012. PP. 3354‒3361. doi: 10.1109/CVPR.2012.6248074
  8. Engel J., Usenko V., Cremers D. A Photometrically Calibrated Benchmark for Monocular Visual Odometry // arXiv preprint arXiv:1607.02555. 2016. doi: 10.48550/arXiv.1607.02555
  9. Chebrolu N., Lottes P., Stachniss C., Winterhalter W., Burgard W., Stachniss C. Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields // The International Journal of Robotics Research. 2017. Vol. 36. Iss. 10. PP. 1045‒1052. doi: 10.1177/0278364917720510
  10. Pire T., Mujica M., Civera J., Kofman E. The Rosario dataset: Multisensor data for localization and mapping in agricultural environments // The International Journal of Robotics Research. 2019. Vol. 38. Iss. 6. PP. 633‒641. doi: 10.1177/0278364919 841437
  11. Minoda K., Schilling F., Wüest V., Floreano D., Yairi T. Viode: A Simulated Dataset to Address the Challenges of Visual-Inertial Odometry in Dynamic Environments // IEEE Robotics and Automation Letters. 2021. Vol. 6. Iss. 2. PP. 1343‒1350. doi: 10.1109/LRA.2021.3058073
  12. Soliman A., Bonardi F., Sidibé D., Bouchafa S. IBISCape: A Simulated Benchmark for multi-modal SLAM Systems Evaluation in Large-scale Dynamic Environments // Journal of Intelligent & Robotic Systems. 2022. Vol. 106. Iss. 3. P. 53. doi: 10.1007/s10846-022-01753-7
  13. Han Y., Liu Z., Sun S., Li D., Sun J., Hong Z., et al. CARLA-Loc: Synthetic SLAM Dataset with Full-stack Sensor Setup in Challenging Weather and Dynamic Environments // arXiv preprint arXiv:2309.08909. 2023. doi: 10.48550/arXiv.2309.08909
  14. Dosovitskiy A., Ros G., Codevilla F., Lopez A., Koltun V. CARLA: An Open Urban Driving Simulator // Proceedings of the 1st Annual Conference on Robot Learning (PMLR, 13‒15 November 2017). 2017. Vol. 78. PP. 1‒16.
  15. Campos C., Elvira R., Rodríguez J.J.G., Montiel J.M.M., Tardós J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM // IEEE Transactions on Robotics. 2021. Vol. 37. Iss. 6. PP. 1874‒1890. doi: 10.1109/TRO.2021.3075644


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах