Open Dataset for Testing of Visual SLAM Algorithms under Different Weather Conditions

Cover Page

Cite item

Full Text

Abstract

Existing datasets for testing SLAM algorithms in outdoor environments are not suitable for assessing the influence of weather conditions on localization accuracy. Obtaining a suitable dataset from the real world is difficult due to the long data collection period and the inability to exclude dynamic environmental factors. Artificially generated datasets make it possible to bypass the described limitations, but up to date, researchers have not identified testing SLAM algorithms under different weather conditions as a stand-alone task, despite the fact that it is one of the main aspects of the difference between outdoor and indoor environments. This work presents a new open dataset that consists of 36 sequences of robot movement in an urban environment or rough terrain, in the form of images from a stereo camera and the ground truth position of the robot, collected at a frequency of 30 Hz. Movement within one area occurs along a fixed route; the sequences are distinguished only by whether conditions, which can make it possible to correctly assess the influence of weather phenomena on the accuracy of localization.

About the authors

A. V. Podtikhov

Saint-Petersburg Federal Research Center of the Russian Academy of Sciences

Email: a.podtikhov@gmail.com
ORCID iD: 0009-0008-3022-5282

A. I. Saveliev

Saint-Petersburg Federal Research Center of the Russian Academy of Sciences

Email: saveliev@iias.spb.su
ORCID iD: 0000-0003-1851-2699
SPIN-code: 2514-6489

References

  1. Olson C.F., Matthies L.H., Schoppers H., Maimone M.W. Robust stereo ego-motion for long distance navigation // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2000, Hilton Head, USA, 15 June 2000). Cat. No. PR00662. IEEE, 2000. Vol. 2. PP. 453‒458. doi: 10.1109/CVPR.2000.854879
  2. Schubert D., Goll T., Demmel N., Usenko V., Stückler J., Cremers D. The TUM VI Benchmark for Evaluating Visual-Inertial Odometry // Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS, Madrid, Spain, 01‒05 October 2018). IEEE, 2018. PP. 1680‒1687. doi: 10.1109/IROS.2018.8593419
  3. Fischler M.A., Bolles R.C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography // Communications of the ACM. 1981. Vol. 24. Iss. 6. PP. 381‒395. doi: 10.1145/358669.358692
  4. Shah S., Dey D., Lovett C., Kapoor A. Airsim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles // Results of the 11th International Conference on Field and Service Robotics (Zurich, Switzerland, 12‒15 September 2017). Springer Proceedings in Advanced Robotics. Cham: Springer, 2018. Vol. 5. PP. 621‒635. doi: 10.1007/978-3-319-67361-5_40
  5. Maddern W., Pascoe G., Newman P. 1 year, 1000 km: The oxford robotcar dataset // The International Journal of Robotics Research. 2017. Vol. 36. Iss. 1. PP. 3‒15. doi: 10.1177/0278364916679
  6. Cordts M., Omran M., Ramos S., Scharwachter T., Enzweiler M., Benenson R., et al. The Cityscapes Dataset. URL: https://markus-enzweiler.de/downloads/publications/cordts15-cvprws.pdf (Accessed 18.01.2024)
  7. Geiger A., Lenz P., Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Providence, USA, 16‒21 June 2012). IEEE, 2012. PP. 3354‒3361. doi: 10.1109/CVPR.2012.6248074
  8. Engel J., Usenko V., Cremers D. A Photometrically Calibrated Benchmark for Monocular Visual Odometry // arXiv preprint arXiv:1607.02555. 2016. doi: 10.48550/arXiv.1607.02555
  9. Chebrolu N., Lottes P., Stachniss C., Winterhalter W., Burgard W., Stachniss C. Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields // The International Journal of Robotics Research. 2017. Vol. 36. Iss. 10. PP. 1045‒1052. doi: 10.1177/0278364917720510
  10. Pire T., Mujica M., Civera J., Kofman E. The Rosario dataset: Multisensor data for localization and mapping in agricultural environments // The International Journal of Robotics Research. 2019. Vol. 38. Iss. 6. PP. 633‒641. doi: 10.1177/0278364919 841437
  11. Minoda K., Schilling F., Wüest V., Floreano D., Yairi T. Viode: A Simulated Dataset to Address the Challenges of Visual-Inertial Odometry in Dynamic Environments // IEEE Robotics and Automation Letters. 2021. Vol. 6. Iss. 2. PP. 1343‒1350. doi: 10.1109/LRA.2021.3058073
  12. Soliman A., Bonardi F., Sidibé D., Bouchafa S. IBISCape: A Simulated Benchmark for multi-modal SLAM Systems Evaluation in Large-scale Dynamic Environments // Journal of Intelligent & Robotic Systems. 2022. Vol. 106. Iss. 3. P. 53. doi: 10.1007/s10846-022-01753-7
  13. Han Y., Liu Z., Sun S., Li D., Sun J., Hong Z., et al. CARLA-Loc: Synthetic SLAM Dataset with Full-stack Sensor Setup in Challenging Weather and Dynamic Environments // arXiv preprint arXiv:2309.08909. 2023. doi: 10.48550/arXiv.2309.08909
  14. Dosovitskiy A., Ros G., Codevilla F., Lopez A., Koltun V. CARLA: An Open Urban Driving Simulator // Proceedings of the 1st Annual Conference on Robot Learning (PMLR, 13‒15 November 2017). 2017. Vol. 78. PP. 1‒16.
  15. Campos C., Elvira R., Rodríguez J.J.G., Montiel J.M.M., Tardós J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM // IEEE Transactions on Robotics. 2021. Vol. 37. Iss. 6. PP. 1874‒1890. doi: 10.1109/TRO.2021.3075644


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies