Interference Between Carrying Frequencies in DRM System

Cover Page

Cite item

Full Text

Abstract

Relevance. In Russia and worldwide, there is a gradual transition to digital radio broadcasting DRM. This transition offers higher quality sound reproduction, significant radio frequency resource savings, high interference resistance, substantial energy savings compared to analog broadcasting systems, and the ability to build single-frequency networks. The cliff effect inherent in DRM-systems necessitates considering the influence of the interference level between subcarriers (ICI, Intercarrier Interference) of the OFDM-signal (Orthogonal Frequency-Division Multiplexing) on the overall interference resistance of DRM-systems. This is partly due to the mismatch of generators in the transmitting and receiving paths of DRM-systems. However, the recommendations of the International Telecommunication Union (ITU-R) and available publications lack requirements for the stability of generators in the transmitting and receiving paths of digital radio broadcasting systems, which significantly affect their interference resistance. This work addresses this gap. Goal. Improve the interference resistance of the DRM-system. Methods. Based on the analysis and development of data available in publications, a method for calculating the interference level between subcarrier frequencies is proposed for situations where there is no loss of orthogonality of subcarrier frequencies during OFDM signal reception, and only white noise (AWGN - Additive White Gaussian Noise) is present in the radio channel. Results. The impact of normalized frequency shift of generators in the DRM-system's transceiver path on the degradation of the signal-to-noise ratio when modulating subcarrier frequencies with QPSK for different levels of interference resistance (PL0-PL3) has been studied and evaluated. It is shown that the interference level between subcarrier frequencies of the OFDM signal depends on reception conditions, modulation type, code rate, required minimum signal strength of the transmitter's electromagnetic field, and the required minimum signal-to-noise ratio at the reception point, receiver's own noise, and atmospheric noise level. The validity of the obtained results is confirmed by experimental data from other researchers. Novelty. The obtained results are new for the DRM-system. In mode stability under stationary reception and QAM-4 subcarrier frequency modulation, DRM-system OFDM signal reception becomes impossible when the frequency mismatch of the transceiver path generators exceeds (2.07…2.32) Hz. Practical significance. Knowledge of the ICI level of the OFDM-signal when the frequency of the generators in the transmitting and receiving clocks of DRM-systems is detuned is necessary for developing national regulatory documents that govern the operational characteristics of DRM system equipment.

About the authors

Yu. A. Kowalgin

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: kowalgin@sut.ru
ORCID iD: 0000-0002-6753-8062
SPIN-code: 4476-0420

References

  1. Бакулин М.Г., Крейнделин В.Б., Шлома А.М., Шумов А.П. Технология OFDM: учебное пособие для вузов. М.: Горячая линия – Телеком, 2016. 352 с. EDN:YPURRV
  2. Cho Y.S., Kim J., Yang W.Y., Kang C.G. Mimo-OFDM Wireleess Communications with Matlab. Singapore: John Wiley & Sons, 2010. 544 p.
  3. Fazel K., Kaiser S. Multi-Carrier and Spread Spectrum Systems: from OFDM and MC-CDMA to LTE and WiMAX. John Wiley & Sons, 2008. 384 p.
  4. Kung T.L. Synchronization and Coding in Wireless Communications Systems. Dissertation Submitted to the Faculty of the Graduate School of the University of Minnesota. 2013. p. 156.
  5. Younis S.B.T. Synchronization Algorithms and Architectures for Wireless OFDM Systems. PhD Thesis. Newcastle University, 2012. 197 p. URL: http://hdl.handle.net/10443/1417 (Accessed 20.04.2024)
  6. Батырев А.И. Оценка влияния сдвига несущей частоты на качество принимаемого сигнала // Омский научный вестник. 2015. № 3(143). С. 259‒262. EDN:VCNUSF
  7. Speth M., Fechtel S.A., Fock G., Meyr H. Optimum Receiver Design for Wireless Broad-Band Systems Using OFDM. Part I // IEEE Transactions on Communications. 1999. Vol. 47. Iss. 11. PP. 1668–1677. doi: 10.1109/26.803501
  8. Morelli M., Kuo C.C.J., Pun M.O. Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review // Proceedings of the IEEE. 2007. Vol. 95. Iss. 7. PP. 1394‒1427. doi: 10.1109/JPROC.2007.897979
  9. Sun Z., Peng T., Wan W. A novel sampling synchronization scheme for OFDM-based system with unified reference clock // Journal on Wireless Communications and Networking. 2012. Vol. 2012. P. 368. doi: 10.1186/1687-1499-2012-368
  10. Zhao Y., Häggman S.-G. Intercarrier Interference Self-Cancellation Scheme for OFDM Mobile Communication Systems // IEEE Transactions on Communications. 2001. Vol. 49. Iss. 7. PP. 1185‒1191. doi: 10.1109/26.935159
  11. Raboh M.S.A., Al Bassiouni A.A.M., Zakaria H.M., El Bahy M.M. Performance Analysis of OFDM Systems Subjected to Carrier Frequency Offset in Fading Communication Channels // International Journal of Engineering Research & Technology. 2015. Vol. 4. Iss. 7. URL: https://www.ijert.org/research/performance-analysis-of-ofdm-systems-subjected-to-carrier-frequency-offset-in-fading-communication-channels-IJERTV4IS070404.pdf (Accessed 20.04.2024)
  12. Жерносеков Р.А., Першин В.Т. Синхронизация системы мультиплексирования с ортогональным разделением частот // Доклады БГУИР. 2017. № 4(106). С. 5‒11. EDN:ZDINJL
  13. Ковалгин Ю.А. Цифровое радиовещание: системы и технологии. М.: Горячая линия ‒ Телеком, 2021. 580 с.
  14. ETSI ES 201 980 v.4.1.2 (2017-04). Digital Radio Mondiale (DRM); System.
  15. Specification // ETSI. 196 p. URL: http://www.etsi.org/standards-search (Accessed 20.04.2024)
  16. Рекомендация ITU-R BS.1660-8 (10/2015). Техническая основа для планирования наземного цифрового звукового радиовещания в полосе ОВЧ.
  17. Planning Parameters for DRM Mode E (‘DRM+’) concerning the use in VHF bands I, II and III V 3.0. 2011. URL: https://drm-radio-kl.eu/berichte_vortraege/drmplus-hdradio/Planning-parameters-for-DRMplus-V30.pdf
  18. Ковалгин Ю.А. Частотное планирование сетей цифрового радиовещания. СПб.: СПбГУТ, 2021.194 с. (Accessed 20.04.2024)

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».