Dynamic Fog Computing Towards Green ICT

Cover Page

Cite item

Full Text

Abstract

Relevance: In the context of the growing fleet of data center equipment, the development of IMT-2020 networks and the imminent emergence of Telepresence services of IMT-2030 networks, a particularly relevant area of modern research is the search for non-trivial, non-standard approaches and solutions in the field of provision of computing and network resources. This article covers current issues in the infrastructure direction of IMT-2030 networks - dynamic fog computing. The contribution of this technology to improve the efficiency of used resources is considered, and current scenarios for IMT-2030 networks are presented. In particular, we study the problem of searching for a group of devices in the computing fog for subsequent migration of typical FaaS platform containers. Problem statement: Research on the joint use of serverless architecture and dynamic fog computing for efficient load distribution of telepresence services. Goal of the work: Research and development of an effective method for distributing a group of microservices in dynamic fog computing. Methods: the algorithms under study belong to the type of metaheuristic algorithms for solving multicriteria optimization problems. To test the method, a laboratory network segment was developed, which served as a generator of real data on the operation of the tested platforms under conditions of increasing load. Based on a series of experiments, data was collected that formed the basis for subsequent modeling of the proposed method, which in turn was implemented in the Python programming language. Result: Analysis of the results showed the effectiveness of the proposed method within the framework of the task, which ultimately makes it possible to make a decision on migration many times faster. Novelty: A model and method for serverless architecture have been developed for migrating groups of microservices to groups of fog computing devices, under conditions of their mobility, and a meta-heuristic algorithm of a pack of gray wolves has been used to determine a group of devices for subsequent migration of typical microservices. Practical significance: The developed model and method can be used in the implementation of fog Computing, in conditions of device mobility, including in order to achieve the requirements of promising Telepresence services.

About the authors

A. N. Volkov

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: artem.nv@sut.ru
ORCID iD: 0009-0002-4296-1822
SPIN-code: 1311-9824

References

  1. Market Overview // Straits research. URL: https://straitsresearch.com/report/data-center-equipment-market (дата обращения 31.05.2024)
  2. Колбанёв М.О., Палкин И.И., Пойманова Е.Д., Татарникова Т.М. Пути создания зеленых информационных технологий // Гидрометеорология и экология. 2021. № 62. С. 127‒138. doi: 10.33933/2074-2762-2021-62-127-138. EDN:OEJEMQ
  3. Manner J. Black software ‒ the energy unsustainability of software systems in the 21st century // Oxford Open Energy. 2023. Vol. 2. doi: 10.1093/ooenergy/oiac011
  4. Alloghani M.A. Architecting Green Artificial Intelligence Products: Recommendations for Sustainable AI Software Development and Evaluation // Artificial Intelligence and Sustainability. Signals and Communication. Cham: Springer, 2024. PP. 65–86. doi: 10.1007/978-3-031-45214-7_4
  5. Schwartz R., Dodge J., Smith N.A., Etzioni O. Green AI // Communications of the ACM. 2020. Vol. 63. Iss. 12. PP. 54–63. doi: 10.1145/3381831
  6. Li Y., Zhu Z., Guan Y., Kang Y. Research on the structural features and influence mechanism of the green ICT transnational cooperation network // Economic Analysis and Policy. 2022. Vol. 75. PP. 734–749. doi: 10.1016/j.eap.2022.07.003
  7. Кричевский Г.Е. Экология и «Зеленые технологии». Как сдержать превращение биосферы в техносферу? // НБИКС ‒ Наука. Технологии. 2019. Т. 3. № 8. C. 22‒26.
  8. Волков А.Н. Туманность в перспективных сетях связи для услуг телеприсутствия // Электросвязь. 2024. № 4. С. 50‒56.
  9. Волков А.Н. Стабильность кластера в динамических туманных вычислениях // Электросвязь. 2024. № 6. С. 8‒16.
  10. Марочкина А.В. Моделирование и кластеризация трехмерной сети интернета вещей с применением метода оценки фрактальной размерности // Электросвязь. 2023. № 6. С. 60‒66. doi: 10.34832/ELSV.2023.43.6.008. EDN:ZBNQKI
  11. Марочкина А.В. Выбор головных узлов кластеров в трехмерных сетях Интернета вещей высокой плотности // Электросвязь. 2023. № 7. С. 26‒32. doi: 10.34832/ELSV.2023.44.7.004. EDN:MKMNQZ

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».