Controller Location and Load Balancing Integrated Solution

Cover Page

Cite item

Full Text

Abstract

The usage of multi-controller SDNs is currently the most efficient approach for constructing the core of communication networks of the fifth and following generations. One of the top priorities in the study of this topic is occupied by the optimisation of the network core construction since it involves relatively high expenses when developing communication networks of the fifth and future generations. Due to the complexity of the problems being tackled, there are currently a number of load balancing algorithms and algorithms for arranging controllers in multicontroller networks that are based on meta-heuristic methods. These algorithms allow for the optimum possible utilisation of controller resources in such networks. However, a comprehensive solution to the load balancing and controller placement issues has yet to be discovered. The answer to such an issue is the focus of this article. The report suggests using network clustering in conjunction with the meta-heuristic chaotic salp swarm technique, which has  shown to be effective in prior research on the challenges of creating multi-controller networks, to accomplish this goal. The salp swarm algorithm in the paper is adjusted to take into account the integral solution to the problem of deploying controllers based on clustering of a multi-controller network and load balancing. By contrasting the simulation results with those from the well-known meta-heuristic particle swarm algorithms optimization and the grey wolf GWO, as well as the previous version of the chaotic salp swarm algorithm CSSA, the effectiveness of the proposed solution was evaluated.

About the authors

A. S. A. Muthanna

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

Email: muthanna.asa@sut.ru
ORCID iD: 0000-0003-0213-8145

References

  1. Кучерявый А.Е., Маколкина М.А., Киричек Р.В. Тактильный интернет. Сети связи со сверхмалыми задержками // Электросвязь. 2016. № 1. С. 44‒46.
  2. Бородин А.С., Кучерявый А.Е. Сети связи пятого поколения как основа цифровой экономики //Электросвязь. 2017. № 5. С. 45‒49.
  3. Кучерявый А.Е., Прокопьев А.В., Кучерявый Е.А. Самоорганизующиеся сети. СПб: Типография «Любавич», 2011. 312 с.
  4. Атея А.А., Мутханна А.С., Кучерявый А.Е. Интеллектуальное ядро для сетей связи 5G и тактильного интернета на базе программно-конфигурируемых сетей // Электросвязь. 2019. № 3. С. 34−40.
  5. Heller B., Sherwood R., McKeown N. The controller placement problem // Proceedings of the Special Interest Group on Data Communication (SIGCOMM ’12, Helsinki, Finland, 13 August−17 August 2012). Special October issue ACM SIGCOMM Computer Communication Review. New York: ACM, 2012. Vol. 42. Iss. 4. PP. 473−478. doi: 10.1145/2377677.2377767
  6. Yao G., Bi J., Li Y., Guo L. On the Capacitated Controller Placement Problem in Software Defined Networks // IEEE Communications Letters. 2014. Vol. 18. Iss. 8. PP. 1339–1342. doi: 10.1109/LCOMM.2014.2332341
  7. Dixit A., Hao F., Mukherjee S., Lakshmanet T.V., Kompella R. Towards an elastic distributed SDN controller // Proceedings of the Special Interest Group on Data Communication (SIGCOMM ’13, Hong Kong, China, 16 August 2013). Special October issue ACM SIGCOMM Computer Communication Review. New York: ACM, 2013. Vol. 43. Iss. 4. PP. 7−12. doi: 10.1145/2534169.2491193
  8. Ozsoy F.A., Pinar M.C. An exact algorithm for the capacitated vertex pcenter problem // Computers & Operations Research. 2006. Vol. 33. Iss. 5. PP. 1420–1436. doi: 10.1016/j.cor.2004.09.035
  9. Sahoo K.S., Sarkar A, Mishra S.K., Sahoo B., Puthal D., Obaidat M.S., et al. Metaheuristic Solutions for Solving Controller Placement Problem in SDN-based WAN Architecture // Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) and 8th International Conference on Data Communication Networking (DCNET), Madrid, Spain, 15‒23 July 2017. SciTePress Digital Library, 2017. PP. 15–23. doi: 10.5220/0006483200150023
  10. Rath H.K., Revoori V., Nadaf S.M., Simha A. Optimal controller placement in Software Defined Networks (SDN) using a non-zero-sum game // Proceedings of the International Symposium on a World of Wireless, Mobile and Multimedia Networks (Sydney, Australia, 19 June 2014). IEEE, 2014. doi: 10.1109/WoWMoM.2014.6918987
  11. Ksentini A., Bagaa M., Taleb T., Balasingham I. On using bargaining game for Optimal Placement of SDN controllers // Proceedings of the International Conference on Communications (ICC, Kuala Lumpur, Malaysia, 22‒27 May 2016). IEEE, 2016. doi: 10.1109/ICC.2016.7511136
  12. Ateya A.A., Muthanna A., Vybornova A., Algarni A.D., Abuarqoub A., Koucheryavy Y., et al. Chaotic salp swarm algorithm for SDN multi-controller networks // Engineering Science and Technology, an International Journal. 2019. Vol. 22. Iss. 4. PP. 1001–1012. doi: 10.1016/j.jestch.2018.12.015
  13. Killi B.P., Rao S.V. Capacitated Next Controller Placement in Software Defined Networks // IEEE Transactions on Network and Service Management. 2017. Vol. 14. Iss. 3. PP. 514–527. doi: 10.1109/TNSM.2017.2720699
  14. Chen W, Chen C, Jiang X, Liu L. Multi-Controller Placement Towards SDN Based on Louvain Heuristic Algorithm // IEEE Access. 2018. Vol. 6. PP. 49486–49497. doi: 10.1109/ACCESS.2018.2867931
  15. Wang G, Zhao Y, Huang J, Duan Q., Li J. A K-means-based network partition algorithm for controller placement in software defined network // Proceedings of the International Conference on Communications (ICC, Kuala Lumpur, Malaysia, 22‒27 May 2016). IEEE, 2016. doi: 10.1109/ICC.2016.7511441
  16. Kuang H., Qiu Y., Li R., Liu X. A Hierarchical K-Means Algorithm for Controller Placement in SDN-Based WAN Architecture // Proceedings of the 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA, Changsha, China, 10‒11 February 2018). IEEE, 2018. PP. 263–267. doi: 10.1109/ICMTMA.2018.00070
  17. Hu Y., Wang W., Gong X., Que X., Cheng S. BalanceFlow: Controller load balancing for OpenFlow networks // Proceedings of the 2nd International Conference on Cloud Computing and Intelligent Systems (Hangzhou, China, 30 October 2012‒01 November 2012. IEEE, 2013. PP. 780‒785. doi: 10.1109/CCIS.2012.6664282

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».