Comprehensive Review of Deep Learning in Intrusion Detection Systems
- Authors: Al-Tameemi M.M.1, Alzaghir A.A.2, Alsweity M.A.3
-
Affiliations:
- Saint Petersburg Electrotechnical University “LETI”
- Moscow Technical University of Communication and Informatics
- The Bonch-Bruevich Saint Petersburg State University of Telecommunications
- Issue: Vol 11, No 3 (2025)
- Pages: 72-86
- Section: INFORMATION TECHNOLOGIES AND TELECOMMUNICATION
- URL: https://journals.rcsi.science/1813-324X/article/view/301087
- EDN: https://elibrary.ru/HSXTLS
- ID: 301087
Cite item
Full Text
Abstract
About the authors
M. M.A Al-Tameemi
Saint Petersburg Electrotechnical University “LETI”
Email: Almokhalad44@gmail.com
A. A.H Alzaghir
Moscow Technical University of Communication and Informatics
Email: a.a.h.alzagi@mtuci.ru
M. A.M Alsweity
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Email: al-sveiti.mam@sut.ru
References
- Navya V.K., Adithi J., Rudrawal D., Tailor H., James N. Intrusion Detection System Using Deep Neural Networks (DNN) // Proceedings of the International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA, Coimbatore, India, 08‒09 October 2021). IEEE, 2022. doi: 10.1109/ICAECA52838.2021.9675513
- Vinayakumar R., Soman K.P. Poornachandran P. Applying convolutional neural network for network intrusion detection // Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI, Udupi, India, 13‒16 September 2017). IEEE, 2017. PP. 1222‒1228. doi: 10.1109/ICACCI.2017.8126009
- Wu Y., Lee W.W., Xu Z., Ni M. Large-scale and robust intrusion detection model combining improved deep belief network with feature-weighted SVM // IEEE Access. 2020. Vol. 8. PP. 98600‒98611. doi: 10.1109/ACCESS.2020.2994947. EDN:APJZGY
- Alpaydin E. Introduction to Machine Learning. MIT Press, 2020.
- Aldwairi T., Perera D., Novotny M.A. An evaluation of the performance of Restricted Boltzmann Machines as a model for anomaly network intrusion detection // Computer Networks. 2018. Vol. 144. PP. 111‒119. doi: 10.1016/j.comnet.2018.07.025
- Choi H., Kim M., Lee G., Kim W. Unsupervised learning approach for network intrusion detection system using autoencoders // The Journal of Supercomputing. 2019. Vol. 75. Iss. 9. PP. 5597‒5621. doi: 10.1007/s11227-019-02805-w. EDN:RJBUQU
- Shahriar M.H., Haque N.I., Rahman M.A., Alonso M. G-ids: Generative adversarial networks assisted intrusion detection system // Proceedings of the 44th Annual Computers, Software, and Applications Conference (COMPSAC, Virtual, Madrid, 13–17 July 2020). IEEE, 2020. PP. 376‒385. doi: 10.1109/COMPSAC48688.2020.0-218. EDN:DJVEFI
- Al-Qatf M., Lasheng Y., Al-Habib M., Al-Sabahi K. Deep Learning Approach Combining Sparse Autoencoder With SVM for Network Intrusion Detection // IEEE Access. 2018. Vol. 6. PP. 52843‒52856. doi: 10.1109/ACCESS.2018.2869577
- Shone N., Ngoc T.N., Phai V.D., Shi Q. A Deep Learning Approach to Network Intrusion Detection // IEEE Transactions on Emerging Topics in Computational Intelligence. 2018. Vol. 2. Iss. 1. PP. 41‒50. doi: 10.1109/TETCI.2017.2772792
- Li Z., Qin Z., Huang K., Yang X., Ye S. Intrusion Detection Using Convolutional Neural Networks for Representation Learning // Proceedings of the 24th International Conference on Neural Information Processing (ICONIP, Guangzhou, China, 14–18 November 2017). Lecture Notes in Computer Science. Cham: Springer, 2017. Vol. 10638. PP. 858‒866. doi: 10.1007/978-3-319-70139-4_87
- Wang S., Wang J., Lu H., Zhao W. A novel combined model for wind speed prediction–Combination of linear model, shallow neural networks, and deep learning approaches // Energy. 2021. Vol. 234. P. 121275. doi: 10.1016/j.energy.2021.121275. EDN:FAJRCK
- Javaid A., Niyaz Q., Sun W., Alam M. A Deep Learning Approach for Network Intrusion Detection System // Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS, New York, USA, 3‒5 December 2015). 2016. PP. 21‒26. doi: 10.4108/eai.3-12-2015.2262516
- Manimaran A., Chandramohan D., Shrinivas S.G., Arulkumar N. A comprehensive novel model for network speech anomaly detection system using deep learning approach // International Journal of Speech Technology. 2020. Vol. 23. Iss. 2. PP. 305‒313. doi: 10.1007/s10772-020-09693-z. EDN:URAWUT
- Alrayes F.S., Zakariah M., Amin S.U., Khan Z.I., Helal M. Intrusion Detection in IoT Systems Using Denoising Autoencoder // IEEE Access. 2024. Vol. 12. PP. 122401‒122425. doi: 10.1109/ACCESS.2024.3451726. EDN:VCPDLT
- Vincent P., Larochelle H., Bengio Y., Manzagol P.A. Extracting and composing robust features with denoising autoencoders // Proceedings of the 25th International Conference on Machine Learning (Helsinki, Finland, 5‒9 July 2008). Association for Computing Machinery, 2008. PP. 1096‒1103. doi: 10.1145/1390156.1390294
- Vincent P., Larochelle H., Lajoie I., Bengio Y., Manzagol P.A., Bottou L. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion // Journal of Machine Learning Research. 2010. Vol. 11. PP. 3371‒3408. EDN:OCLKDJ
- Zhang N., Ding S., Zhang J., Xue Y. An overview on restricted Boltzmann machines // Neurocomputing. 2018. Vol. 275. PP. 1186‒1199. doi: 10.1016/j.neucom.2017.09.065
- Mayuranathan M., Murugan M., Dhanakoti V. Retracted article: best features based intrusion detection system by RBM model for detecting DDoS in cloud environment // Journal of Ambient Intelligence and Humanized Computing. 2021. Vol. 12. Iss. 3. PP. 3609‒3619. doi: 10.1007/s12652-019-01611-9. EDN:LAAOLK
- Seo S., Park S., Kim J. Improvement of Network Intrusion Detection Accuracy by Using Restricted Boltzmann Machine // Proceedings of the 8th International Conference on Computational Intelligence and Communication Networks (CICN, Tehri, India, 23‒25 December 2016). IEEE, 2016. PP. 413‒417. doi: 10.1109/CICN.2016.87
- Balakrishnan N., Rajendran A., Pelusi D., Ponnusamy V. Deep Belief Network Enhanced Intrusion Detection System to Prevent Security Breach in the Internet of Things // Internet of Things. 2021. Vol. 14. P. 100112. doi: 10.1016/j.iot.2019.100112. EDN:CZRBGW
- Yang Y., Zheng K., Wu C., Niu X., Yang Y. Building an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networks // Applied Sciences. 2019. Vol. 9. Iss. 2. P. 238. doi: 10.3390/app9020238. EDN:ABGPER
- Parhizkari S. Anomaly Detection in Intrusion Detection Systems. 2023. doi: 10.5772/intechopen.112733
- Mehibs S.M., Hashim S.H. Proposed Network Intrusion Detection System in Cloud Environment Based on Back Propagation Neural Network // Journal of University of Babylon for Pure and Applied Sciences. 2018. Vol. 26. Iss. 1. PP. 29‒40. doi: 10.29196/jub. v26i1.351
- Al-Tameemi M.M.A., Alzaghir A.A.H. Improving Network Security Through Deep Learning RNN Approach // Computational Nanotechnology. 2024. Vol. 11. Iss. 4. PP. 114–121. doi: 10.33693/2313-223X-2024-11-4-114-121. EDN:GPCZUD
- Smagulova K., James A.P. A survey on LSTM memristive neural network architectures and applications // The European Physical Journal Special Topics. 2019. Vol. 228. Iss. 10. PP. 2313‒2324. doi: 10.1140/epjst/e2019-900046-x. EDN:HRKIKB
- Han K., Yu D., Tashev I. Speech emotion recognition using deep neural network and extreme learning machine // Interspeech 2014. doi: 10.21437/Interspeech.2014-57
- Roy S.S., Mallik A., Gulati R., Obaidat M.S., Krishna P.V. A deep learning based artificial neural network approach for intrusion detection // Proceedings of the Third International Conference on Mathematics and Computing (ICMC 2017, Haldia, India, 17‒21 January 2017). Communications in Computer and Information Science. Singapore: Springer, 2017. Vol. 655. PP. 44‒53. doi: 10.1007/978-981-10-4642-1_5
- Gowdhaman V., Dhanapal R. An intrusion detection system for wireless sensor networks using deep neural network // Soft Computing. 2022. Vol. 26. Iss. 23. PP. 13059‒13067. doi: 10.1007/s00500-021-06473-y. EDN:KHFOPY
- Yang Y., Zheng K., Wu C., Niu X., Yang Y. Building an Effective Intrusion Detection System Using the Modified Density Peak Clustering Algorithm and Deep Belief Networks // Applied Sciences. 2019. Vol. 9. Iss. 2. P. 238. doi: 10.3390/app9020238. EDN:ABGPER
- Mohammadpour L., Ling T.Ch., Liew Ch.S., Aryanfar A. A Survey of CNN-Based Network Intrusion Detection // Applied Sciences. 2022. Vol. 12. Iss. 16. P. 8162. doi: 10.3390/app12168162. EDN:EFJJTR
- Razavian A.S., Azizpour H., Sullivan J., Carlsson S. CNN features off-the-Shelf: An Astounding Baseline for Recognition // arXiv. 2014. doi: 10.48550/arXiv.1403.6382
- Jo W., Kim S., Lee C., Shon T. Packet preprocessing in CNN-based network intrusion detection system // Electronics. 2020. Vol. 9. Iss. 7. P. 1151. doi: 10.3390/electronics9071151. EDN:XVUGFM
- Sabuhi M., Zhou M., Bezemer C.P., Musilek P. Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review // IEEE Access. 2021. Vol. 9. PP. 161003‒161029. doi: 10.1109/ACCESS.2021.3131949. EDN:TJDTSD
- Dunmore A., Jang-Jaccard J., Sabrina F., Kwak J. A Comprehensive Survey of Generative Adversarial Networks (GANs) in Cybersecurity Intrusion Detection // IEEE Access. 2023. Vol. 11. PP. 76071‒76094. doi: 10.1109/ACCESS.2023.3296707. EDN:NOKCVG
Supplementary files
