Interactive Image Processing for Robust Geometric Primitives Recognition

Cover Page

Cite item

Full Text

Abstract

Relevance. Recognition of geometric primitives is used in image processing to solve problems related to the development of machine learning algorithms, reducing the analysis area and reducing computational complexity. One of the problems of primitives recognition is the resulting dependence from such external factors as: a wide range of changes in brightness, contrast and the interference caused by uneven lighting, foreign objects or pollution. A separate task is the geometric position estimation of the primitive in the image, which is defined by offsets, rotation and scale or parameters of a more complex mathematical transformation model. A wide class of tasks is not limited by the requirement of automatic processing in real time. Therefore, these problems can be solved by an interactive parameters setting. The interactive processing method ensures robustness to spatial-luminance distortions and various interferences.The article purpose is to improve the quality of recognition of geometric primitives (using the example of a circle) in images through interactive (visually controlled by the operator) processing.The proposed solution essence is two processing stages: the stage of pre-processing in interactive mode and the stage of estimating the geometric parameters of the primitive with automatic removal of impulse noise. At the first stage, a threshold is selected for detecting the contour of a primitive and limiting the analysis area (selecting a fragment) in the image. These parameters are determined by a graphical interface in interactive mode (for example, changing the detection threshold almost instantly displays recognized contours in the image). At the second stage, in accordance with the shape of the primitive, an area of interest is selected, which removes impulse noise (contour points that do not belong to the primitive), and the parameters of the primitive are estimated based on the point of the area of interest using the least squares method. The developed algorithm has an implementation as a program with a graphical interface. Experiments to test the developed algorithm showed satisfactory recognition of the geometric primitive “circle” on various types of images containing a road sign, a polymer gel particle, and an ferrule end face. The scientific novelty of the solution lies in the possibility of recognizing primitives, which is robust to spatial-brightness transformations (scale, displacements, brightness unevenness, etc.) and other noise.The theoretical significance lies in expanding the capabilities of recognition methods (in particular, primitives such as “circles”) through interactive selection of parameters at the preprocessing stage.The practical significance lies in the simplicity of image processing algorithms that are used to solve applied problems (preparing machine learning data, processing by optical micrometry methods) that do not require real-time recognition.

About the authors

A. A. Diyazitdinova

Povolzhskiy State University of Telecommunications and Informatics

Email: a.diyazitdinova@psuti.ru

References

  1. Шульга Т.Э., Солопекин Д.А. Распознавание дорожных знаков российского образца с использованием нейронных сетей // Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика. 2024. № 2. С. 85–94. doi: 10.24143/2072-9502-2024-2-85-94. EDN:LTLMXA
  2. Rajesh R., Rajeev K., Suchithra K., Lekhesh V.P., Gopakumar V., Ragesh N.K. Coherence vector of Oriented Gradients for traffic sign recognition using Neural Networks // Proceedings of the International Joint Conference on Neural Networks (San Jose, USA, 31 July ‒ 05 August 2011). IEEE, 2011. PP. 907–910. doi: 10.1109/IJCNN.2011.6033318. EDN:PKQGGB
  3. Атавуллаева Ш.Ш., Ферапонтов Н.Б., Тробов Х.Т., Турсунова Г.Х., Джураева Р.А. Определение состава растворов смесей электролитов методом оптической микрометрии // Universum: химия и биология. 2024. № 11-2(125). С. 46‒51. doi: 10.32743/UniChem.2024.125.11.18355. EDN:HYSJJG
  4. Токмачев М.Г. Методика оценки объема гранулы полимерного геля в оптической микрометрии // Компьютерная оптика. 2023. Т. 47. № 6. С. 968–971. doi: 10.18287/2412-6179-CO-1271. EDN:OJTKGA
  5. Bourdine A.V., Pashin S.S., Zaitseva E.S., Vasilets A.A., Antonov S.A. Fast and simple method for estimation of the in-sertion loss at the connection of singlemode optical fibers with contaminated ferrule end faces // Proceedings of the XVIIth International Scientific and Technical Conference "Optical Technologies for Telecommunications" (Kazan, Russian Federation, 19–21 November 2019). SPIE, 2020. Vol. 11516. P. 115161O. doi: 10.1117/12.2566456. EDN:GGNEOJ
  6. Пашин С.С. Исследование потенциальных возможностей оценивания коэффициента передачи основной моды на основе анализа перекрытия радиального распределения полей в дискретном представлении // Инфокоммуникационные технологии. 2021. Т. 19. № 2. С. 172–178. doi: 10.18469/ikt.2021.19.2.05. EDN:QIKRUK
  7. Canny J. A Computational Approach to Edge Detection // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1986. Vol. PAMI-8. Iss. 6. PP. 679–698. doi: 10.1109/TPAMI.1986.4767851
  8. Chochia P.A. Image segmentation via contour tracking in application to the analysis of the photographs of electronic microcircuits // Journal of Communications Technology and Electronics. 2010. Vol. 55. Iss. 12. PP. 1466–1473. doi: 10.1134/S1064226910120193
  9. Boykov Y., Jolly M.-P. Interactive Organ Segmentation Using Graph Cuts // Proceedings of the 3rd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2000, Pittsburgh, USA, 11‒14 October 2000). Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2000. Vol. 1935. PP. 276–286. doi: 10.1007/978-3-540-40899-4_28
  10. Пашин С.С. Разработка методов контроля параметров передачи разъемных соединений оптических волокон кабелей связи. Дис. … канд. техн. наук. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2022. 221 с. EDN:KBOFZL
  11. Konushin A., Shakhuro V. Traffic sign recognition // Graphics and Media Lab. UTL: https://graphics.cs.msu.ru/projects/traffic-sign-recognition.html (дата обращения 05.01.2025)
  12. Каретин А.Н. МНК для апроксимации данных окружностью. 2010. URL: https://mykaralw.narod.ru/articles/mnk_circle.pdf (дата обращения 05.01.2025)

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».