Analyzing and Predicting the Time Series of Cyberattacks on Higher Education Departmental Institution Information System: Methods Opportunities and Limitations

Cover Page

Cite item

Full Text

Abstract

The article relevance is due to the growing threats to computer security of critical information resources, including in the education system, cyberattacks types and trends diversity, requiring known analysis and forecasting methods differentiation, including those based on the use of time series theory. The article aim is to study the possibilities and limitations of using time series theory methods to analyses and predict the cyber attacks dynamics on the departmental university example that trains specialists in many security types: technosphere, fire, information and other. Hypothesis about the influence of the initial data nature on the methods for cyberattacks number time series analyzing and forecasting choice, and primacy of initial data on the solving these tasks effectiveness was stated and tested. Analyses of the corporate information system firewall monitoring logs are performed. On their basis, time series number of different types of attacks are constructed. The tasks of building mathematical models and current forecasting have been solved. An integrated approach to their solution based on preliminary processing, testing of statistical hypotheses about DS- and TS-stationarity and use of different forecasting methods was applied. The obtained results novelty is due to known methods of time series forecasting theory application to studying the dynamics of cyberattacks on the departmental university corporate information system. Theoretical significance consists in establishing the limits of their application possibility due to the studied time series variability, as well as in confirming the initial data primary quality over the existing methods and models. The practical value is determined by the time series models construction that allow solving tasks of cyberattacks number current forecasting.

About the authors

V. N. Naumov

North-West Institute of Management of the Russian Presidential Academy of National Economy and Public Administration

Email: naumov122@list.ru
ORCID iD: 0000-0002-0385-3530
SPIN-code: 1137-2375

M. V. Buinevich

Saint Petersburg University of State Fire Service of Emercom of Russia

Email: bmv1958@yandex.ru
ORCID iD: 0000-0001-8146-0022
SPIN-code: 9339-3750

M. Y. Sineshchuk

Saint Petersburg University of State Fire Service of Emercom of Russia

Email: smaxim@igps.ru
ORCID iD: 0009-0005-8108-3198
SPIN-code: 1657-9947

M. A. Tukmacheva

Saint Petersburg University of State Fire Service of Emercom of Russia

Email: mtukmacheva@mail.ru
ORCID iD: 0009-0004-2496-7117
SPIN-code: 2489-5760

References

  1. Глазьев С.Ю. Теория долгосрочного технико-экономического развития. М.: ВлаДар, 1993. EDN:YSXIUV
  2. Нильсен Э. Практический анализ временных рядов. Прогнозирование со статистикой и машинное обучение. СПб.: Диалектика, 2021. 544 с.
  3. Хайндман Р., Атанасопулос Дж. Прогнозирование: принципы и практика. Пер. с англ. М.: ДМК Пресс, 2023. 458 с.
  4. Исаев С.В., Кононов Д.Д. Исследование динамики и классификация атак на веб-сервисы корпоративной сети // Сибирский аэрокосмический журнал. 2022. Т. 23. № 4. С. 593–601. doi: 10.31772/2712-8970-2022-23-4-593-601. EDN:RUSJWB
  5. Zuzčák M., Bujok P. Using honeynet data and a time series to predict the number of cyber attacks // Computer Science and Information Systems. 2021. Vol. 18. Iss. 4. PP. 1197–1217. doi: 10.2298/CSIS200715040Z
  6. Ларионов К.О. Прогнозирование статистических данных атак на прикладное программное обеспечение // Проблемы современной науки и образования. 2021. № 6(163). С. 57‒63. doi: 10.24411/2304-2338-2021-10606. EDN:PGVALC
  7. Hobijn B., Franses P.H., Ooms M. Generalization of the KPSS-test for stationarity // Statistica Neerlandica. 2004. Vol. 58. Iss. 4. PP. 482‒502. doi: 10.1111/j.1467-9574.2004.00272.x
  8. Phillips P.C.B., Perron P. Testing for a Unit Root in Time Series Regression // Biometrika. 1988. Vol. 75. Iss. 2. PP. 335‒346. doi: 10.1093/biomet/75.2.335. EDN:ILNEET
  9. Hersbach H. Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems // Weather and Forecast. 2000. Vol. 15. Iss. 5. PP. 559–570. doi: 10.1175/1520-0434(2000)0152.0.CO;2
  10. Dawid A.P., Sebastiani P. Coherent Dispersion Criteria for Optimal Experimental Design // Annals of Statistics. 1999. Vol. 27. Iss. 1. PP. 65‒81.
  11. Bickel P.J., Doksum K.A. An Analysis of Transformations // Journal of the American Statistical Association. 1981. Vol. 76. Iss. 374. PP. 296‒311. doi: 10.2307/2287831
  12. Hyndman R.J., Koehler A.B., Snyder R.D., Grose S. A state space framework for automatic forecasting using exponential smoothing methods // International Journal Forecasting. 2002. Vol. 18. Iss. 3. PP. 439–454.
  13. Cleveland R.B., Cleveland W.S., McRae J.E., Terpenning I.J. STL: A Seasonal-Trend Decomposition Procedure Based on Loess // Journal of Official Statistics. 1990. Vol. 6. Iss. 1. PP. 3–33.
  14. Scott S., Varian H.R. Predicting the Present with Bayesian Structural Time Series // SSRN Electronic Journal. 2014. Vol. 5. Iss. 1/2. PP. 4–23. doi: 10.1504/IJMMNO.2014.059942
  15. Мастицкий С.Э. Анализ временных рядов с помощью R. 2020. URL: https://ranalytics.github.io/tsa-with-r (дата обращения 19.12.2024)

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).