Algorithm for Detecting Reference Points on a Digital Electrocardiogram in Real Time

Cover Page

Cite item

Full Text

Abstract

Relevance. The use of digital electrocardiographs and cardiac monitors with built-in algorithms for automatic processing, analysis and interpretation of electrocardiograms allows the doctor to effectively diagnose cardiac arrhythmias. It is known that in order to provide emergency care to a patient, the duration of arrhythmia diagnostics should not exceed several tens of seconds, which requires the emergence of new algorithms for detecting informative features indicating arrhythmia, operating in real time. The need to introduce new and effective technologies for diagnosing cardiovascular diseases is also reflected in public health development programmes.Research goal. Development and quality indicators analysis of the algorithm for reference points detection on a digital electrocardiogram, bearing informative signs for the procedure of arteries diagnosis.The methods used. The study is based on an analysis of existing approaches to the problem of reference points detection on digital electrocardiogram, as well as conducting a test of the proposed algorithms by mathematical modelling methods. The quality indicators of the algorithms defined in accordance with the principles of signal detection theory and diagnostic testing, at the junction of which the task of electrocardiogram reference point detection is located. The proposed algorithm was tested on materials of MIT-BIH Arrhythmia Database, which is widely used for verification and validation of real-time digital electrocardiogram signal processing algorithms.The results. The study proposes an algorithm for detecting reference points on a digital electrocardiogram that carry informative features for the arrhythmia diagnostic procedure. The proposed algorithm is based on digital signal filtering using a decision rule based on a three-step two-threshold principle of pre-processed electrocardiogram signal values comparison on a sliding window. An experiment on the materials of the open verified MIT-BIH Arrhythmia DB showed that the quality of the proposed algorithm for detecting reference points is higher than that of the algorithms used in modern digital electrocardiographs and cardiac monitors. The proposed algorithm based on digital signal filtering and the three-step two-threshold decision rule have elements of scientific novelty.The significance. The results of this work can be used in the development of digital heart rate monitors, cardiac devices and for automatic processing, analysis and real-time computer-assisted digital electrocardiogram signal interpretation.

About the authors

В. K. Akopyan

Saint Petersburg State University of Aerospace Instrumentation

Email: akopyan.bella@yandex.ru
ORCID iD: 0000-0001-5298-9015
SPIN-code: 3728-6254

References

  1. Юлдашев З.М. Продолжительность диагностики аритмий для оказания экстренной помощи не должна превышать нескольких десятков секунд // Медвестник. 2018. URL: https://medvestnik.ru/content/interviews/Prodoljitelnost-diagnostiki-aritmii-dlya-okazaniya-ekstrennoi-pomoshi-ne-doljna-prevyshat-neskolkih-desyatkov-sekund.html (дата обращения 30.09.2024)
  2. Нестерова Е.А. Основы электрокардиографии. Нормальная ЭКГ // Кардиология: Новости. Мнения. Обучение. 2016. № 2(9). С. 77‒85. EDN:WFLXIP
  3. Рудницкий Л.В. Карманный справочник медицинских анализов. СПб.: Питер, 2014. 320 с.
  4. Акопян Б.К. Классификация эпизодов нарушений сердечного ритма по информативным признакам во временной области электрокардиограммы // Известия высших учебных заведений. Приборостроение. 2024. Т. 67. № 4. С. 305‒314. doi: 10.17586/0021-3454-2024-67-4-305-314. EDN:DSWAXC
  5. Иванов Г.Г., Дворников В.Е., Сбеитан С., Булгакова Е.Ю., Александрова М.Р., Грибанов А.Н. Анализ показателей структуры вариабельности ритма сердца у здоровых лиц по данным РР- и RR-интервалов // Вестник Российского университета дружбы народов. Серия: Медицина. 2007. № 4. С. 26‒34. EDN:JVDXGH
  6. Анциперов В.Е., Забросаев И.В., Растягаев Д.В. Детектирование нарушений сердечного ритма с использованием техники аналитических спектров // Журнал радиоэлектроники. 2015. № 12. С. 16. EDN:VHTMVJ
  7. Friesen G.M., Jannett T.C., Jadallah M.A., Yates S.L., Quint S.R., Nagle H.T. A comparison of the noise sensitivity of nine QRS-detection algorithms // IEEE Transactions on Biomedical Engineering. 1990. Vol. 37. Iss. 1. PP. 85‒98. doi: 10.1109/10.43620
  8. Akopyan B. Development of the automated cardiac rhythm disorders detection and classification algorithm // Bulletin of the UNESCO Department “Distance education in engineering” of the SUAI. 2022. Iss. 7. PP. 28‒31. EDN:QSKIML
  9. Kohler B.-U., Hennig C., Orglmeister R. The principles of software QRS detection // IEEE Engineering in Medicine and Biology Magazine. 2002. Vol. 21. Iss. 1. PP. 42‒57. doi: 10.1109/51.993193
  10. Zong W., Moody G.B., Jiang D. A robust open-source algorithm to detect onset and duration of QRS-complexes // Proceedings of the Conference on Computers in Cardiology (Thessaloniki, Greece, 21‒24 September 2003). IEEE, 2003. PP. 737‒740. doi: 10.1109/CIC.2003.1291261
  11. Жаринов О.О., Жаринов И.О. Применение корреляционно-экстремального метода для решения задач обнаружения и оценивания положений опорных точек QRS-комплексов в электрокардиограмме // Научно-технический вестник информационных технологий, механики и оптики. 2011. № 5(75). С. 85‒90. EDN:OCBFFH
  12. Боженко В.В., Черныш Н.Ю., Татарникова Т.М. Интеллектуальный анализ данных в диагностике анемии по клиническим показателям // Известия высших учебных заведений. Приборостроение. 2024. Т. 67. № 4. С. 321‒329. doi: 10.17586/0021-3454-2024-67-4-321-329. EDN:AUAHNY
  13. Раскопина А.С., Боженко В.В., Татарникова Т.М. Использование глубокого обучения при диагностировании пневмонии по рентгеновским снимкам // Известия высших учебных заведений. Приборостроение. 2024. Т. 67. № 4. С. 315‒320.doi: 10.17586/0021-3454-2024-67-4-321-329. EDN:UPSNQQ

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».