Modelling of Timestamp Processing within Transport Network Equipment

Cover Page

Cite item

Full Text

Abstract

The modern telecommunication networks are forming on the basis of different transmission and data processing technologies. High load on the transport layer nodes demands quality synchronization of equipment that works on it. The transport network is an important element which delivers the time scale to slave nodes. Using the time-division multiplexing for the high-speed channel processing with the use of wavelength division multiplexing (OTN, Optical Transport Network) and classic Ethernet networks as a transport layer systems needs the precision time synchronization which can be achieved with the use of Precision Time Protocol (PTP). The modeling apparatus of PTP messages exchanging within OTN multiplexers and IP-network based on the routers are suggested. The packet transferring through the network are given as sequence of simple processing steps. The impact of a network load on PTP information processing capacity on the routers and efficiency of the Forward Error Correction algorithm for OTN equipment are analyzed. The experimental distribution of variable delays on that network elements are given.

About the authors

A. K. Kanaev

Emperor Alexander I St. Petersburg State Transport University

Email: kanaevak@mail.ru
ORCID iD: 0000-0002-1578-2629
SPIN-code: 5908-1095

E. V. Kazakevich

Emperor Alexander I St. Petersburg State Transport University

Email: kev-pgups@yandex.ru
ORCID iD: 0000-0002-4549-787X
SPIN-code: 8940-5523

M. A. Saharova

Emperor Alexander I St. Petersburg State Transport University

Email: maryazuvaka@mail.ru
ORCID iD: 0000-0001-5067-8539
SPIN-code: 6630-1274

F. A. Proshin

Emperor Alexander I St. Petersburg State Transport University

Email: fedorproshin@gmail.com
ORCID iD: 0009-0009-5513-9302
SPIN-code: 7907-6604

References

  1. Рекомендация МСЭ-T G.709/Y.1331 (11/2022) Интерфейсы оптической транспортной сети (OTN).
  2. Рекомендация МСЭ-Т G.8264/Y.1364 (03/2018) Распределение хронирующей информации по пакетным сетям.
  3. Ferrant J., Gilson M., Jobert S., Mayer M. Synchronous Ethernet and IEEE 1588 in Telecoms. Next Generation Synchronization Networks. John Wiley & Sons, 2013. 356 p. doi: 10.1002/9781118580080
  4. Rec. ITU-T G.8260 (11/2022) Definitions and terminology for synchronization in packet networks.
  5. Rec. ITU-T G.8251 (09/2010) The control of jitter and wander within the optical transport network (OTN).
  6. Rec. ITU-T G.8265.1/Y.1365.1 (11/2022) Precision time protocol telecom profile for frequency synchronization.
  7. Rec. ITU-T G.8275.1/Y.1369.1 (02/2022) Precision time protocol telecom profile for time/phase synchronization with full timing support from the network.
  8. Rec. ITU-T G.8275.1/Y.1369.2 (02/2020) Precison time protocol telecom profile for time/phase synchronization with partial timing support from the network.
  9. Хмелев К. Основы фотонного транспорта. Киев: Техника, 2008. 680 с.
  10. Канаев А.К., Лукичев М.М., Лукичева В.Л. Методика формирования эквивалентного мультисервисного узла технологической сети связи в среде имитационного моделирования, учитывающая все параметры качества обслуживания в установившемся режиме // T-Comm: Телекоммуникации и транспорт. 2019. Т. 13. № 12. С. 13−23. doi: 10.24411/2072-8735-2018-10328. EDN:GFCKKT
  11. Wigley L. An Update on Router Buffering: White Paper. // @xrdocs. 2022. URL: https://xrdocs.io/8000/Buffering-WP_March_2022.pdf (Accessed 15.03.2024)
  12. Салифов И.И. Методика оценки сквозной задержки на оптической магистральной сети со сложной архитектурой. Дисс. … канд. техн. наук. Екатеринбург: Ростелеком, 2012. 253 с. EDN:QFTOZF
  13. WDM/OTN Network Latency Composition // Huawei. 2020. URL: https://forum.huawei.com/enterprise/en/wdm-otn-network-latency-composition/thread/667240035646324736-667213856692383744 (Accessed 15.03.2024)
  14. Veisllari R., Bjornstad S., Stol N. Scheduling techniques in an integrated hybrid node with electronic buffers // Proceedings of the 16th International Conference on Optical Network Design and Modelling (ONDM, Colchester, UK, 17−20 April 2012). IEEE, 2012. PP. 1−6. doi: 10.1109/ONDM.2012.6210185
  15. Veisllary R., Bjornstad S., Hjelme D.R. Experimental demonstration of high throughput, ultra-low delay variation packet/circuit fusion network // Electronics Letters. 2013. Vol. 49. Iss. 2. PP. 141−143. doi: 10.1049/el.2012.4156
  16. Understanding Network Latency in Ethernet Switches // Fiber Optic Network Products. URL: https://www.fiberopticshare.com/network-latency-in-ethernet-switches.html#:~:text=Normally%2C%20for%20the%20most%20commonly,from%205%20to%2050%20microseconds (Accessed 19.03.2024)


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies