Traffic Classification Model in Software-Defined Networks with Artificial Intelligence Elements

Cover Page

Cite item

Full Text

Abstract

Application classification is essential to improve network performance. However, with the constant growth in the number of users and applications, as well as the scaling of networks, traditional classification methods cannot fully cope with the identification and classification of network applications with the required level of delay. The use of deep learning technology together with the architecture features of software-defined networks (SDN) will allow the implementation of a new hybrid deep neural network for application classification, which can provide high classification accuracy without manual selection and feature extraction. The proposed structure proposes a classification of applications, taking into account the logical centralized management on the SDN controller. The processed data is used to train a hybrid deep neural network consisting of stacked autoencoder with a high dimensionality of the hidden layer and an output layer based on softmax regression. The necessary network flow parameters can be obtained by processing traffic with a stacked auto-encoder instead of manual processing. The softmax regression layer is used as the final application classifier. The article presents simulation results that demonstrate the advantages of the proposed classification method in comparison with the support vector machine.

About the authors

V. S. Elagin

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: v.elagin@sut.ru
ORCID iD: 0000-0003-4213-953X
SPIN-code: 5340-1954

References

  1. Елагин В.С. Динамическое управление нагрузкой в программно-конфигурируемых сетях // Труды учебных заведений связи. 2017. Т. 3. № 3. С. 60‒67.
  2. Елагин В.С., Дмитриева Ю.С. Моделирование сетевого ресурса в программно-конфигурируемых сетях // Вестник связи. 2020. № 6. С. 35‒40.
  3. Zhang J., Chen X., Xiang Y., Zhou W., Wu J. Robust Network Traffic Classification // IEEE /ACM Transactions on Networking. 2015. Vol. 23. Iss. 4. PP. 1257‒1270. doi: 10.1109/TNET.2014.2320577
  4. Kim H., Claffy K.C., Fomenkov M., Barman D., Faloutsos M., Lee K. Internet traffic classification demystified: myths, caveats, and the best practices // Proceedings of the Conference on emerging Networking EXperiments and Technologies (Madrid, Spain, 9‒12 December 2008). New York: Association for Computing Machinery, 2008. doi: 10.1145/1544012.1544023
  5. Auld T., Moore A.W., Gull S.F. Bayesian Neural Networks for Internet Traffic Classification // IEEE Transactions Neural Networ. 2007. Vol. 18. Iss. 1. PP. 223‒239. doi: 10.1109/TNN.2006.883010
  6. Nguyen T.T.T., Armitage G. A survey of techniques for internet traffic classification using machine learning // IEEE Communication Survive Tutorials. 2008. Vol. 10. Iss. 4. PP. 56‒76. doi: 10.1109/SURV.2008.080406
  7. Valenti S., Rossi D., Dainotti A., Pescapè A., Finamore A., Mellia M. Reviewing Traffic Classification // Biersack E., Callegari C., Matijasevic M. (eds) Data Traffic Monitoring and Analysis. Lecture Notes in Computer Science. Berlin, Germany: Springer, 2013. Vol. 7754. PP. 123‒147. doi: 10.1007/978-3-642-36784-7_6
  8. Zhang J., Chen C., Xiang Y., Zhou W., Xiang Y. Internet Traffic Classification by Aggregating Correlated Naive Bayes Predictions // IEEE Transactions on Information Forensics and Security. 2013. Vol. 8. Iss. 1. PP. 5‒15. doi: 10.1109/TIFS.2012.2223675
  9. Grimaudo L., Mellia M., Baralis E., Keralapura R. SeLeCT: Self-Learning Classifier for Internet Traffic // IEEE Transactions Network Service Management. 2014. Vol. 11. Iss. 2. PP. 144‒157. doi: 10.1109/TNSM.2014.011714.130505
  10. Cao J., Fang Z., Qu G., Sun H., Zhang D. An accurate traffic classification model based on support vector machines // International Journal of Network Management. 2017. Vol. 27. Iss. 1. P. e1962. doi: 10.1002/nem.1962
  11. Pasca S.T.V., Prasad S.S., Kataoka K. AMPF: Application-aware Multipath Packet Forwarding using Machine Learning and SDN // arXiv:1606.05743. 2016. doi: 10.48550/arXiv.1606.05743
  12. Amaral P., Dinis J., Pinto P., Bernardo L., Tavares J., Mamede H.S. Machine Learning in Software Defined Networks: Data Collection and Traffic Classification // Proceedings of the 24th International Conference on Network Protocols (ICNP, Singapore, 08‒11 November 2016). IEEE, 2016. doi: 10.1109/ICNP.2016.7785327
  13. Wang P., Lin S.C., Luo M. A Framework for QoS-aware Traffic Classification Using Semi-supervised Machine Learning in SDNs // Proceedings of the International Conference on Services Computing (SCC, San Francisco, USA, 27 June ‒ 02 July 2016). IEEE, 2016. doi: 10.1109/SCC.2016.133
  14. LeCun Y., Bengio Y., Hinton G. Deep learning // Nature. 2015. Vol. 521. Iss. 7553. PP. 436‒444. doi: 10.1038/nature14539
  15. Chen X.W., Lin X. Big Data Deep Learning: Challenges and Perspectives // IEEE Access. 2014. Vol. 2. PP. 514‒525. doi: 10.1109/ACCESS.2014.2325029
  16. Kreutz D., Ramos F.M.V., Verissimo P.E., Rothenberg C.E., Azodolmolky S., Uhlig S. Software-Defined Networking: a Comprehensive Survey // Proceedings of the IEEE. 2015. Vol. 103. Iss. 1. PP. 14‒76. doi: 10.1109/JPROC.2014.2371999
  17. Bu C., Wang X., Cheng H., Huang M., Li K., Das S. Enabling Adaptive Routing Service Customization via the Integration of SDN and NFV // Journal of Network Computing Applications. 2017. Vol. 93. PP. 123‒136. doi: 10.1016/j.jnca.2017.05.010
  18. Yi B., Wang X., Huang M. Design and evaluation of schemes for provisioning service function chainwith function scalability // Journal of Network Computing Applications. 2017. Vol. 93. PP. 197‒214. doi: 10.1016/j.jnca.2017.05.013
  19. Lv J., Wang X., Huang M., Shi J., Li K., Li J. RISC: ICN routing mechanism incorporating SDN and community division // Computing Network. 2017. Vol. 123. PP. 88‒103. doi: 10.1016/j.comnet.2017.05.010
  20. He Q., Wang X., Huang M. OpenFlow-based low-overhead and high-accuracy SDN measurement framework // Transactions on Emerging Telecommunications Technologies. 2018. Vol. 29. Iss. 2. P. e3263. doi: 10.1002/ett.3263
  21. Yi B., Wang X., Li K., Das S.K., Huang M. A comprehensive survey of Network Function Virtualization // Computing Network. 2018. Vol. 133. PP. 212‒262. doi: 10.1016/j.comnet.2018.01.021
  22. Shu Z., Wan J., Lin J., Wang S., Li D., Rho S., et al. Traffic engineering in software-defined networking: Measurement and management // IEEE Access. 2016. Vol. 4. PP. 3246‒3256. doi: 10.1109/ACCESS.2016.2582748
  23. Cui L., Yu F.R., Yan Q. When big data meets software-defined networking: SDN for big data and big data for SDN // IEEE Network. 2016. Vol. 30. Iss. 1. PP. 58‒65. doi: 10.1109/MNET.2016.7389832
  24. Zhang L., Huang H., Jing X. A modified cyclostationary spectrum sensing based on softmax regression model // Proceedings of the 16th International Symposium on Communications and Information Technologies (ISCIT, Qingdao, China, 26‒28 September 2016). IEEE, 2016. doi: 10.1109/ISCIT.2016.7751707
  25. Zhang H., Lu G., Qassrawi M.T., Zhang Y., Yu X. Feature selection for optimizing traffic classification // Computing Communicdtion. 2012. Vol. 35. Iss. 12. PP. 1457‒1471. doi: 10.1016/j.comcom.2012.04.012
  26. da Silva A.S., Machado C.C., Bisol R.V., Granville L.Z., Schaeffer A. Identification and Selection of Flow Features for Accurate Traffic Classification in SDN // Proceedings of the 14th International Symposium on Network Computing and Applications (NCA, Cambridge, USA, 28‒30 September 2015). IEEE, 2015. doi: 10.1109/NCA.2015.12
  27. Schmidhuber J. Deep learning in neural networks: an overview // Neural Network. 2015. Vol. 61. PP. 85‒117. doi: 10.1016/j.neunet.2014.09.003
  28. Salama M.A., Eid H.F., Ramadan R.A., Darwish A., Hassanien E. Hybrid Intelligent Intrusion Detection Scheme // Gaspar-Cunha A., Takahashi R., Schaefer G., Costa L. (eds) Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing. Berlin, Heidelberg: Springer, 2011. Vol. 96. PP. 293‒303. doi: 10.1007/978-3-642-20505-7_26
  29. Fiore U., Palmieri F., Castiglione A., De Santis A. Network anomaly detection with the restricted Boltzmann machine // Neurocomputing. 2013. Vol. 122. PP. 13‒23. doi: 10.1016/j.neucom.2012.11.050
  30. Lv Y., Duan Y., Kang W., Li Z., Wang F.Y. Traffic Flow Prediction with Big Data: a Deep Learning Approach // IEEE Transactions Intelligent Transport System. 2015. Vol. 16. Iss. 2. PP. 865‒873. doi: 10.1109/TITS.2014.2345663
  31. Yang H.F., Dillon T.S., Chen Y.P. Optimized Structure of the Traffic Flow Forecasting Model with a Deep Learning Approach // IEEE Transactions on Neural Networks and Learning Systems. 2017. Vol. 28. Iss. 10. PP. 2371‒2381. doi: 10.1109/TNNLS.2016.2574840
  32. Huang W., Song G., Hong H., Xie K. Deep Architecture for Traffic Flow Prediction: Deep Belief Networks with Multitask Learning // IEEE Transactions Intelligent Transport System. 2014. Vol. 15. Iss. 5. PP. 2191‒2201. doi: 10.1109/TITS.2014.2311123
  33. Bengio Y., Lamblin P., Popovici D., Larochelle H. Greedy Layer-Wise Training of Deep Networks // Proceedings of the Conference on Advances in Neural Information Processing Systems 19 (2006). MIT Press, 2007. PP. 153‒160.
  34. BRASIL. Characterizing Network-based Applications. Data sets // University of Cambridge Computer Laboratory. URL: https://www.cl.cam.ac.uk/research/srg/netos/projects/brasil/data/index.html (дата обращения 15.06.2023)

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).