Traffic Classification Model in Software-Defined Networks with Artificial Intelligence Elements
- Authors: Elagin V.S.1
-
Affiliations:
- The Bonch-Bruevich Saint Petersburg State University of Telecommunications
- Issue: Vol 9, No 5 (2023)
- Pages: 66-78
- Section: Articles
- URL: https://journals.rcsi.science/1813-324X/article/view/254397
- DOI: https://doi.org/10.31854/1813-324X-2023-9-5-66-78
- ID: 254397
Cite item
Full Text
Abstract
Application classification is essential to improve network performance. However, with the constant growth in the number of users and applications, as well as the scaling of networks, traditional classification methods cannot fully cope with the identification and classification of network applications with the required level of delay. The use of deep learning technology together with the architecture features of software-defined networks (SDN) will allow the implementation of a new hybrid deep neural network for application classification, which can provide high classification accuracy without manual selection and feature extraction. The proposed structure proposes a classification of applications, taking into account the logical centralized management on the SDN controller. The processed data is used to train a hybrid deep neural network consisting of stacked autoencoder with a high dimensionality of the hidden layer and an output layer based on softmax regression. The necessary network flow parameters can be obtained by processing traffic with a stacked auto-encoder instead of manual processing. The softmax regression layer is used as the final application classifier. The article presents simulation results that demonstrate the advantages of the proposed classification method in comparison with the support vector machine.
About the authors
V. S. Elagin
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Email: v.elagin@sut.ru
ORCID iD: 0000-0003-4213-953X
SPIN-code: 5340-1954
References
- Елагин В.С. Динамическое управление нагрузкой в программно-конфигурируемых сетях // Труды учебных заведений связи. 2017. Т. 3. № 3. С. 60‒67.
- Елагин В.С., Дмитриева Ю.С. Моделирование сетевого ресурса в программно-конфигурируемых сетях // Вестник связи. 2020. № 6. С. 35‒40.
- Zhang J., Chen X., Xiang Y., Zhou W., Wu J. Robust Network Traffic Classification // IEEE /ACM Transactions on Networking. 2015. Vol. 23. Iss. 4. PP. 1257‒1270. doi: 10.1109/TNET.2014.2320577
- Kim H., Claffy K.C., Fomenkov M., Barman D., Faloutsos M., Lee K. Internet traffic classification demystified: myths, caveats, and the best practices // Proceedings of the Conference on emerging Networking EXperiments and Technologies (Madrid, Spain, 9‒12 December 2008). New York: Association for Computing Machinery, 2008. doi: 10.1145/1544012.1544023
- Auld T., Moore A.W., Gull S.F. Bayesian Neural Networks for Internet Traffic Classification // IEEE Transactions Neural Networ. 2007. Vol. 18. Iss. 1. PP. 223‒239. doi: 10.1109/TNN.2006.883010
- Nguyen T.T.T., Armitage G. A survey of techniques for internet traffic classification using machine learning // IEEE Communication Survive Tutorials. 2008. Vol. 10. Iss. 4. PP. 56‒76. doi: 10.1109/SURV.2008.080406
- Valenti S., Rossi D., Dainotti A., Pescapè A., Finamore A., Mellia M. Reviewing Traffic Classification // Biersack E., Callegari C., Matijasevic M. (eds) Data Traffic Monitoring and Analysis. Lecture Notes in Computer Science. Berlin, Germany: Springer, 2013. Vol. 7754. PP. 123‒147. doi: 10.1007/978-3-642-36784-7_6
- Zhang J., Chen C., Xiang Y., Zhou W., Xiang Y. Internet Traffic Classification by Aggregating Correlated Naive Bayes Predictions // IEEE Transactions on Information Forensics and Security. 2013. Vol. 8. Iss. 1. PP. 5‒15. doi: 10.1109/TIFS.2012.2223675
- Grimaudo L., Mellia M., Baralis E., Keralapura R. SeLeCT: Self-Learning Classifier for Internet Traffic // IEEE Transactions Network Service Management. 2014. Vol. 11. Iss. 2. PP. 144‒157. doi: 10.1109/TNSM.2014.011714.130505
- Cao J., Fang Z., Qu G., Sun H., Zhang D. An accurate traffic classification model based on support vector machines // International Journal of Network Management. 2017. Vol. 27. Iss. 1. P. e1962. doi: 10.1002/nem.1962
- Pasca S.T.V., Prasad S.S., Kataoka K. AMPF: Application-aware Multipath Packet Forwarding using Machine Learning and SDN // arXiv:1606.05743. 2016. doi: 10.48550/arXiv.1606.05743
- Amaral P., Dinis J., Pinto P., Bernardo L., Tavares J., Mamede H.S. Machine Learning in Software Defined Networks: Data Collection and Traffic Classification // Proceedings of the 24th International Conference on Network Protocols (ICNP, Singapore, 08‒11 November 2016). IEEE, 2016. doi: 10.1109/ICNP.2016.7785327
- Wang P., Lin S.C., Luo M. A Framework for QoS-aware Traffic Classification Using Semi-supervised Machine Learning in SDNs // Proceedings of the International Conference on Services Computing (SCC, San Francisco, USA, 27 June ‒ 02 July 2016). IEEE, 2016. doi: 10.1109/SCC.2016.133
- LeCun Y., Bengio Y., Hinton G. Deep learning // Nature. 2015. Vol. 521. Iss. 7553. PP. 436‒444. doi: 10.1038/nature14539
- Chen X.W., Lin X. Big Data Deep Learning: Challenges and Perspectives // IEEE Access. 2014. Vol. 2. PP. 514‒525. doi: 10.1109/ACCESS.2014.2325029
- Kreutz D., Ramos F.M.V., Verissimo P.E., Rothenberg C.E., Azodolmolky S., Uhlig S. Software-Defined Networking: a Comprehensive Survey // Proceedings of the IEEE. 2015. Vol. 103. Iss. 1. PP. 14‒76. doi: 10.1109/JPROC.2014.2371999
- Bu C., Wang X., Cheng H., Huang M., Li K., Das S. Enabling Adaptive Routing Service Customization via the Integration of SDN and NFV // Journal of Network Computing Applications. 2017. Vol. 93. PP. 123‒136. doi: 10.1016/j.jnca.2017.05.010
- Yi B., Wang X., Huang M. Design and evaluation of schemes for provisioning service function chainwith function scalability // Journal of Network Computing Applications. 2017. Vol. 93. PP. 197‒214. doi: 10.1016/j.jnca.2017.05.013
- Lv J., Wang X., Huang M., Shi J., Li K., Li J. RISC: ICN routing mechanism incorporating SDN and community division // Computing Network. 2017. Vol. 123. PP. 88‒103. doi: 10.1016/j.comnet.2017.05.010
- He Q., Wang X., Huang M. OpenFlow-based low-overhead and high-accuracy SDN measurement framework // Transactions on Emerging Telecommunications Technologies. 2018. Vol. 29. Iss. 2. P. e3263. doi: 10.1002/ett.3263
- Yi B., Wang X., Li K., Das S.K., Huang M. A comprehensive survey of Network Function Virtualization // Computing Network. 2018. Vol. 133. PP. 212‒262. doi: 10.1016/j.comnet.2018.01.021
- Shu Z., Wan J., Lin J., Wang S., Li D., Rho S., et al. Traffic engineering in software-defined networking: Measurement and management // IEEE Access. 2016. Vol. 4. PP. 3246‒3256. doi: 10.1109/ACCESS.2016.2582748
- Cui L., Yu F.R., Yan Q. When big data meets software-defined networking: SDN for big data and big data for SDN // IEEE Network. 2016. Vol. 30. Iss. 1. PP. 58‒65. doi: 10.1109/MNET.2016.7389832
- Zhang L., Huang H., Jing X. A modified cyclostationary spectrum sensing based on softmax regression model // Proceedings of the 16th International Symposium on Communications and Information Technologies (ISCIT, Qingdao, China, 26‒28 September 2016). IEEE, 2016. doi: 10.1109/ISCIT.2016.7751707
- Zhang H., Lu G., Qassrawi M.T., Zhang Y., Yu X. Feature selection for optimizing traffic classification // Computing Communicdtion. 2012. Vol. 35. Iss. 12. PP. 1457‒1471. doi: 10.1016/j.comcom.2012.04.012
- da Silva A.S., Machado C.C., Bisol R.V., Granville L.Z., Schaeffer A. Identification and Selection of Flow Features for Accurate Traffic Classification in SDN // Proceedings of the 14th International Symposium on Network Computing and Applications (NCA, Cambridge, USA, 28‒30 September 2015). IEEE, 2015. doi: 10.1109/NCA.2015.12
- Schmidhuber J. Deep learning in neural networks: an overview // Neural Network. 2015. Vol. 61. PP. 85‒117. doi: 10.1016/j.neunet.2014.09.003
- Salama M.A., Eid H.F., Ramadan R.A., Darwish A., Hassanien E. Hybrid Intelligent Intrusion Detection Scheme // Gaspar-Cunha A., Takahashi R., Schaefer G., Costa L. (eds) Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing. Berlin, Heidelberg: Springer, 2011. Vol. 96. PP. 293‒303. doi: 10.1007/978-3-642-20505-7_26
- Fiore U., Palmieri F., Castiglione A., De Santis A. Network anomaly detection with the restricted Boltzmann machine // Neurocomputing. 2013. Vol. 122. PP. 13‒23. doi: 10.1016/j.neucom.2012.11.050
- Lv Y., Duan Y., Kang W., Li Z., Wang F.Y. Traffic Flow Prediction with Big Data: a Deep Learning Approach // IEEE Transactions Intelligent Transport System. 2015. Vol. 16. Iss. 2. PP. 865‒873. doi: 10.1109/TITS.2014.2345663
- Yang H.F., Dillon T.S., Chen Y.P. Optimized Structure of the Traffic Flow Forecasting Model with a Deep Learning Approach // IEEE Transactions on Neural Networks and Learning Systems. 2017. Vol. 28. Iss. 10. PP. 2371‒2381. doi: 10.1109/TNNLS.2016.2574840
- Huang W., Song G., Hong H., Xie K. Deep Architecture for Traffic Flow Prediction: Deep Belief Networks with Multitask Learning // IEEE Transactions Intelligent Transport System. 2014. Vol. 15. Iss. 5. PP. 2191‒2201. doi: 10.1109/TITS.2014.2311123
- Bengio Y., Lamblin P., Popovici D., Larochelle H. Greedy Layer-Wise Training of Deep Networks // Proceedings of the Conference on Advances in Neural Information Processing Systems 19 (2006). MIT Press, 2007. PP. 153‒160.
- BRASIL. Characterizing Network-based Applications. Data sets // University of Cambridge Computer Laboratory. URL: https://www.cl.cam.ac.uk/research/srg/netos/projects/brasil/data/index.html (дата обращения 15.06.2023)
Supplementary files

