Location Aware Beamforming in Millimeter-Wave Band Ultra-Dense Radio Access Networks. Part 2. Model of a Set of Radio Links

Cover Page

Cite item

Full Text

Abstract

The second part of the study of beamforming issues, based on positioning in ultra-dense millimeter wave radio access networks, is devoted to the formalization and software implementation of a complex simulation model of the functioning of a set of directional radio links. Each directional radio link between a base station (gNodeB – gNB), equipped with an antenna array, and a user equipment (UE), operating in omnidirectional mode, is formed according to the location of the UE, known at the gNB. The set of gNB→UE directional radio links, simultaneously operating in a common frequency range, is studied as a set of traffic beams, that implement space division multiple access (SDMA). Spatial multiplexing is implemented through three-dimensional beamforming at the gNB and makes it possible to compensate for propagation losses and high levels of interference. In the first part of the study, it was shown that the problem of practical implementation of SDMA in ultra-dense radio access networks is a significant (tens of dB) spread in the signal to interference plus noise ratio (SINR), depending on the arrangement of two devices. The purpose of this study is to establish the dependence of SINR on 1) the beamwidth of the gNB sector in the direction of the user equipment in the radio link of the signal of interest (SOI); 2) uncertainty of the UE location; 3) interference from radio links of signal not of interest (SNOI): a) within its sector, b) other sectors of its cell and c) other cells in the network. The simulation model developed and implemented in software in this work for the first time made it possible to establish the interdependence of the UE positioning error factors and the required width of the traffic beam for its service. In particular, it was found, that as the positioning error decreases from 10 to 1 m, the required beam width in the horizontal and vertical planes narrows to 3 °, which makes it possible to increase the SINR to 25 dB. A simultaneous transmission multiplexing study showed that for 64 spatially multiplexed UEs, as the cell size increases from 20 to 300 m, the SINR increases by approximately 30 dB, subject to a beamwidth constraint of 3°. Unlike similar studies, in this model, the contribution from interference from simultaneously operating traffic beams within its sector, other sectors of its cell and other cells in the network is shown separately for the first time, which allows to differentiate the origin of interference and use scientifically based beamwidth control for their compensation.

About the authors

G. A. Fokin

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: fokin.ga@sut.ru
ORCID iD: 0000-0002-5358-1895
SPIN-code: 4922-4442

References

  1. Фокин Г.А. Диаграммообразование на основе позиционирования в сверхплотных сетях радиодоступа миллиметрового диапазона. Часть 1. Модель двух радиолиний // Труды учебных заведений связи. 2023. Т. 9. № 4. С. 44‒63. doi: 10.31854/1813-324X-2023-9-4-44-63
  2. Фокин Г.А. Концепция диаграммообразования на основе позиционирования в сетях 5G // Вестник связи. 2022. № 10. С. 1‒7.
  3. Фокин Г.А. Сценарии позиционирования в сетях 5G // Вестник связи. 2020. № 3. С. 13‒21.
  4. Фокин Г.А. Моделирование сверхплотных сетей радиодоступа 5G с диаграммообразованием // T-Comm: Телекоммуникации и транспорт. 2021. Т. 15. № 5. С. 4‒21. doi: 10.36724/2072-8735-2021-15-5-4-21.
  5. Фокин Г.А. Модели диаграммообразования в сверхплотных сетях радиодоступа 5G. Часть 1. Оценка помех // Первая миля. 2021. № 3(95). С. 66‒73. doi: 10.22184/2070-8963.2021.95.3.66.73
  6. Фокин Г.А. Модели диаграммообразования в сверхплотных сетях радиодоступа 5G. Часть 2. Оценка разноса устройств // Первая миля. 2021. № 4(96). С. 66‒73. doi: 10.22184/2070-8963.2021.96.4.66.72
  7. Фокин Г.А. Процедуры выравнивания лучей устройств 5G NR // Электросвязь. 2022. № 2. С. 26‒31. DOI:10.34832/ ELSV.2022.27.2.003
  8. Фокин Г.А. Модели управления лучом в сетях 5G NR. Часть 1. Выравнивание лучей при установлении соединения // Первая миля. 2022. № 1(101). С. 42‒49. doi: 10.22184/2070-8963.2022.101.1.42.49
  9. Фокин Г. Модели управления лучом в сетях 5G NR. Часть 2. Выравнивание лучей при ведении радиосвязи // Первая миля. 2022. № 3(103). С. 62‒69. doi: 10.22184/2070-8963.2022.103.3.62.68
  10. Fazliu Z.L., Malandrino F., Chiasserini C.F., Nordio A. MmWave Beam Management in Urban Vehicular Networks // IEEE Systems Journal. 2021. Vol. 15. Iss. 2. PP. 2798‒2809. doi: 10.1109/JSYST.2020.2996909
  11. Andrews J.G., Zhang X., Durgin G.D., Gupta A.K. Are we approaching the fundamental limits of wireless network densification? // IEEE Communications Magazine. 2016. Vol. 54. Iss. 10. PP. 184‒190. doi: 10.1109/MCOM.2016.7588290
  12. Roh W., Seol J.-Y., Park J., Lee B., Lee J., Kim Y., et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results // IEEE Communications Magazine. 2014. Vol. 52. Iss. 2. PP. 106‒113. doi: 10.1109/MCOM.2014.6736750
  13. Chiaraviglio L., Turco S., Bianchi G., Blefari-Melazzi N. “Cellular Network Densification Increases Radio-Frequency Pol-lution”: True or False? // IEEE Transactions on Wireless Communications. 2022. Vol. 21. Iss. 4. PP. 2608‒2622. doi: 10.1109/TWC.2021.3114198
  14. Chiaraviglio L., Rossetti S., Saida S., Bartoletti S., Blefari-Melazzi N. “Pencil Beamforming Increases Human Exposure to ElectroMagnetic Fields”: True or False? // IEEE Access. 2021. Vol. 9. PP. 25158‒25171. doi: 10.1109/ACCESS.2021.3057237
  15. Thors B., Furuskär A., Colombi D., Törnevik C. Time-Averaged Realistic Maximum Power Levels for the Assessment of Radio Frequency Exposure for 5G Radio Base Stations Using Massive MIMO // IEEE Access. 2017. Vol. 5. PP. 19711‒19719. doi: 10.1109/ACCESS.2017.2753459
  16. Awada A., Lobinger A., Enqvist A., Talukdar A., Viering I. A simplified deterministic channel model for user mobility investigations in 5G networks // Proceedings of the International Conference on Communications (ICC, Paris, France, 21‒25 May 2017). IEEE, 2017. doi: 10.1109/ICC.2017.7997079
  17. Ali A., Karabulut U., Awada A., Viering I., Tirkkonen O., Barreto A.N., et al. System Model for Average Downlink SINR in 5G Multi-Beam Networks // Proceedings of the 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC, Istanbul, Turkey, 08‒11 September 2019). IEEE, 2019. PP. 1‒6. doi: 10.1109/PIMRC.2019.8904367
  18. Yu B., Yang L., Ishii H. Load Balancing With 3-D Beamforming in Macro-Assisted Small Cell Architecture // IEEE Transactions on Wireless Communications. 2016. Vol. 15. Iss. 8. PP. 5626‒5636. doi: 10.1109/TWC.2016.2563430
  19. Harada H., Prasad R. Simulation and Software Radio for Mobile Communications. Artech House, 2002. 448 p.
  20. ITU-R M.2135-1 (12/2009) Guidelines for evaluation of radio interface technologies for IMT-Advanced.
  21. ITU-R M.2412-0 (10/2017) Guidelines for evaluation of radio interface technologies for IMT-2020.
  22. GPP TS 23.273 V18.2.0 (06/2023) 5G System (5GS) Location Services (LCS); Stage 2 (Release 18).
  23. GPP TS 22.071 V17.0.0 (03/2022) Location Services (LCS); Service description; Stage 1 (Release 17).
  24. GPP TS 23.032 V18.0.0 (06/2023) Universal Geographical Area Description (GAD) (Release 18).
  25. GPP TS 22.261 V19.3.0 (06/2023) Service requirements for the 5G system; Stage 1 (Release 19).
  26. Gross F. Smart Antennas for Wireless Communications: With MATLAB. McGraw-Hill Professional, 2005. 288 p.
  27. Balanis C.A. Antenna theory: analysis and design. John Wiley & Sons, 2016. 1104 p.
  28. Mailloux R.J. Phased Array Antenna Handbook. Artech House, 2017. 691 p.
  29. Hamdy M.N. Beamformers Explained. URL: www.commscope.com/globalassets/digizuite/542044-beamformer-explained-wp-114491-en.pdf (дата обращения 18.10.2023)
  30. HBR 3.5 GHz 8x8 MIMO Panel Antenna. URL: https://halberdbastion.com/products/antenna-catalogue/hbr-35-ghz-8x8-mimo-panel-antenna (дата обращения 18.10.2023)
  31. GPP TR 38.901 V17.0.0 (03/2022) Study on channel model for frequencies from 0.5 to 100 GHz (Release 17).
  32. Имитационная модель совокупности радиолиний с диаграммообразованием на основе позиционирования в сетях 5G // GitHub. URL: https://github.com/grihafokin/LAB_system_level_rus (дата обращения 18.10.2023)
  33. polyshape. 2-D polygonal shapes // MathWorks. URL: https://www.mathworks.com/help/matlab/ref/polyshape.html (дата обращения 18.10.2023)
  34. subtract. Difference of two polyshape objects // MathWorks. URL: https://www.mathworks.com/help/matlab/ref/polyshape.subtract.html (дата обращения 18.10.2023)


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies