Location Aware Beamforming in Millimeter-Wave Band Ultra-Dense Radio Access Networks. Part 1. Model of Two Links
- Authors: Fokin G.A.1
-
Affiliations:
- The Bonch-Bruevich Saint Petersburg State University of Telecommunications
- Issue: Vol 9, No 4 (2023)
- Pages: 44-63
- Section: Articles
- URL: https://journals.rcsi.science/1813-324X/article/view/254386
- DOI: https://doi.org/10.31854/1813-324X-2023-9-4-44-63
- ID: 254386
Cite item
Full Text
Abstract
The evolution of 1G to 4G radio access networks (RANs) over the past 40 years has shown that beamforming (BF) capabilities add an additional spatial dimension to traditional device multiplexing methods. When base stations (gNodeB - gNB) and user equipment (UE) form narrow antenna radiation patterns (APPs), in addition to frequency, time and code division of channels, an additional spatial dimension appears that implements spatial multiplexing. This concept has been known for quite a long time, but the full implementation of its capabilities in practice is expected with the widespread adoption of millimeter wave (mmWave) ultra-dense networks (UDN) of the fifth (5G) and subsequent (B5G) generations. To control APP, the approach of preliminary analysis of training sequences about the current situation in the radio channel - CSI (Channel State Information) - can be used, but its overhead costs become unacceptably high in conditions of ultra-dense distribution of devices. An alternative approach is positioning-based BF. The validity, relevance and prospects of this approach are determined by the fact that for 5G networks, unlike previous generations, for the first time the requirements for UE positioning accuracy up to one meter are formalized. Initial research in the field of location-aware BF has already been carried out over the past years, however, mainly for particular scenarios of one or more radio links between gNBs and fixed UEs. In this work, for the first time, a scientifically based methodology for controlling the beam pattern of a stationary gNB based on the positioning of a mobile UE for a two-radio link scenario is formalized and implemented in software. The problem of practical implementation of BF is the difficulties to predict level of interference due to the mutual influence of radio links with mobile UEs. When estimating the instantaneous signal-to-interference ratio in a two-radio link scenario between two fixed gNBs that perform BF based on the current location of mobile UEs as they move, it is necessary to take into account the mutual influence of each other's radio links on each other. In such a scenario, a transmitter on one radio link acts both as a source of a wanted signal for one UE and as a source of an interfering signal for another UE. The task of assessing interference for such a scenario is complicated by the nonlinearity of the transmitter and/or receiver ARPs. The model developed and implemented in software in this work uses the functions of the Phased Array System Toolbox Matlab extension package. The simulation results show a significant scatter (tens of dB) of the instantaneous signal-to-interference ratio depending on the territorial separation of devices and can be used to justify scenarios for the construction and operation of 5G/B5G UDN.
About the authors
G. A. Fokin
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Email: fokin.ga@sut.ru
ORCID iD: 0000-0002-5358-1895
References
- Фокин Г.А. Концепция диаграммообразования на основе позиционирования в сетях 5G // Вестник связи. 2022. № 10. С. 1‒7.
- Диаграммообразование на основе позиционирования в сверхплотных сетях радиодоступа миллиметрового диапазона // Российский научный фонд. URL: https://rscf.ru/project/22-29-00528 (дата обращения 10.09.2023)
- Фокин Г.А., Кучерявый А.Е. Сетевое позиционирование в экосистеме 5G // Электросвязь. 2020. № 9. C. 51‒58. doi: 10.34832/ELSV.2020.10.9.006
- Фокин Г.А. Использование методов сетевого позиционирования в экосистеме 5G // Электросвязь. 2020. № 11. С. 29‒37. doi: 10.34832/ELSV.2020.12.11.002
- Фокин Г.А. Комплекс моделей и методов позиционирования устройств в сетях пятого поколения. Дис. ... докт. техн. наук. СПб.: СПбГУТ, 2021. 499 с.
- Фокин Г.А. Технологии сетевого позиционирования. СПб.: СПбГУТ, 2020. 558 с.
- Фокин Г.А. Технологии сетевого позиционирования 5G. М.: Горячая Линия – Телеком, 2021. 456 с.
- Фокин Г.А. Моделирование сверхплотных сетей радиодоступа 5G с диаграммообразованием // T-Comm: Телекоммуникации и транспорт. 2021. Т. 15. № 5. С. 4‒21. doi: 10.36724/2072-8735-2021-15-5-4-21
- Фокин Г.А. Модели диаграммообразования в сверхплотных сетях радиодоступа 5G. Часть 1. Оценка помех // Первая миля. 2021. № 3(95). С. 66‒73. doi: 10.22184/2070-8963.2021.95.3.66.73
- Фокин Г.А. Модели диаграммообразования в сверхплотных сетях радиодоступа 5G. Часть 2. Оценка разноса устройств // Первая миля. 2021. № 4(96). С. 66‒73. doi: 10.22184/2070-8963.2021.96.4.66.72
- Фокин Г.А. Процедуры выравнивания лучей устройств 5G NR // Электросвязь. 2022. № 2. С. 26‒31. DOI:10.34832/ ELSV.2022.27.2.003
- Фокин Г.А. Модели управления лучом в сетях 5G NR. Часть 1. Выравнивание лучей при установлении соединения // Первая миля. 2022. № 1(101). С. 42‒49. doi: 10.22184/2070-8963.2022.101.1.42.49
- Фокин Г. Модели управления лучом в сетях 5G NR. Часть 2. Выравнивание лучей при ведении радиосвязи // Первая миля. 2022. № 3(103). С. 62‒69. doi: 10.22184/2070-8963.2022.103.3.62.68
- Фокин Г.А. Модель технологии сетевого позиционирования метровой точности 5G NR. Часть 1. Конфигурация сигналов PRS // Труды учебных заведений связи. 2022. Т. 8. № 2. С. 48‒63. doi: 10.31854/1813-324X-2022-8-2-48-63
- Фокин Г.А. Модель технологии сетевого позиционирования метровой точности 5G NR. Часть 2. Обработка сигналов PRS // Труды учебных заведений связи. 2022. Т. 8. № 3. С. 80‒99. doi: 10.31854/1813-324X-2022-8-3-80-99
- Фокин Г.А., Лазарев В.О. Программный модуль для оценки взаимного влияния радиолиний двух адаптивных антенн при диаграммообразовании. Свидетельство о государственной регистрации программы для ЭВМ RU 2021662103 от 14.07.2021. Опубл. 22.07.2021.
- Rappaport T.S., Gutierrez F., Ben-Dor E., Murdock J.N., Qiao Y., Tamir J.I. Broadband Millimeter-Wave Propagation Measurements and Models Using Adaptive-Beam Antennas for Outdoor Urban Cellular Communications // IEEE Transactions on Antennas and Propagation. 2013. Vol. 61. Iss. 4. PP. 1850‒1859. doi: 10.1109/TAP.2012.2235056
- Nam Y.-H., Ng B.L., Sayana K., Li Y., Zhang J., Kim Y., et al. Full-dimension MIMO (FD-MIMO) for next generation cellular technology // IEEE Communications Magazine. 2013. Vol. 51. Iss. 6. PP. 172‒179. doi: 10.1109/MCOM.2013.6525612
- Lu L., Li G.Y., Swindlehurst A.L., Ashikhmin A., Zhang R. An Overview of Massive MIMO: Benefits and Challenges // IEEE Journal of Selected Topics in Signal Processing. 2014. Vol. 8. Iss. 5. PP. 742‒758. doi: 10.1109/JSTSP.2014.2317671
- Razavizadeh S.M., Ahn M., Lee I. Three-Dimensional Beamforming: A new enabling technology for 5G wireless networks // IEEE Signal Processing Magazine. 2014. Vol. 31. Iss. 6. PP. 94‒101. doi: 10.1109/MSP.2014.2335236
- Roh W., Seol J.-Y., Park J., Lee B., Lee J., Kim Y., et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results // IEEE Communications Magazine. 2014. Vol. 52. Iss. 2. PP. 106‒113. doi: 10.1109/MCOM.2014.6736750
- Larsson E.G., Edfors O., Tufvesson F., Marzetta T.L. Massive MIMO for next generation wireless systems // IEEE Communications Magazine. 2014. Vol. 52. Iss. 2. PP. 186‒195. doi: 10.1109/MCOM.2014.6736761
- Sun S., Rappaport T.S., Heath R.W., Nix A., Rangan S. Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? // IEEE Communications Magazine. 2014. Vol. 52. Iss. 12. PP. 110‒121. doi: 10.1109/MCOM.2014.6979962
- Han S., I C.-l., Xu Z., Rowell C. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G // IEEE Communications Magazine. 2015. Vol. 53. Iss. 1. PP. 186‒194. doi: 10.1109/MCOM.2015.7010533
- Kutty S., Sen D. Beamforming for Millimeter Wave Communications: An Inclusive Survey // IEEE Communications Surveys & Tutorials. 2016. Vol. 18. Iss. 2. PP. 949‒973. doi: 10.1109/COMST.2015.2504600
- Rappaport T.S., Xing Y., MacCartney G.R., Molisch A.F., Mellios E., Zhang J. Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks – With a Focus on Propagation Models // IEEE Transactions on Antennas and Propagation. 2017. Vol. 65. Iss. 12. PP. 6213‒6230. doi: 10.1109/TAP.2017.2734243
- Heath R.W., González-Prelcic N., Rangan S., Roh W., Sayeed A.M. An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems // IEEE Journal of Selected Topics in Signal Processing. 2016. Vol. 10. Iss. 3. PP. 436‒453. doi: 10.1109/JSTSP.2016.2523924
- Björnson E, Sanguinetti L, Wymeersch H, Hoydis J, Marzetta TL. Massive MIMO is a reality ‒ What is next? Five promising research directions for antenna arrays // Digital Signal Processing. 2019. Vol. 94. PP. 3‒20. doi: 10.1016/j.dsp.2019.06.007
- Heng Y., Andrews J.G., Mo J., Va V., Ali A., Ng B.L., et al. Six Key Challenges for Beam Management in 5.5G and 6G Systems // IEEE Communications Magazine. 2021. Vol. 59. Iss. 7. PP. 74‒79. doi: 10.1109/MCOM.001.2001184
- Bang J., Chung H., Hong J., Seo H., Choi J., Kim S. Millimeter-Wave Communications: Recent Developments and Challenges of Hardware and Beam Management Algorithms // IEEE Communications Magazine. 2021. Vol. 59. Iss. 8. PP. 86‒92. doi: 10.1109/MCOM.001.2001010
- Maiberger R., Ezri D., Erlihson M. Location based beamforming // Proceedings of the 26th Convention of Electrical and Electronics Engineers in Israel (Eilat, Israel, 17‒20 November 2010). IEEE, 2010. PP. 000184‒000187. DOI:10.1109/ EEEI.2010.5661954
- Alkhateeb A., Ayach O.El., Leus G., Heath R.W. Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems // IEEE Journal of Selected Topics in Signal Processing. 2014. Vol. 8. Iss. 5. PP. 831‒846. doi: 10.1109/JSTSP.2014. 2334278
- Va V., Zhang X., Heath R.W. Beam Switching for Millimeter Wave Communication to Support High Speed Trains // Proceedings of the 82nd Vehicular Technology Conference (VTC2015-Fall, Boston, USA, 06‒09 September 2015). IEEE, 2015. doi: 10.1109/VTCFall.2015.7390855
- Va V., Heath R.W. Basic Relationship between Channel Coherence Time and Beamwidth in Vehicular Channels // Proceedings of the 82nd Vehicular Technology Conference (VTC2015-Fall, Boston, USA, 06‒09 September 2015). IEEE, 2015 doi: 10.1109/VTCFall.2015.7390852
- Va V., Choi J., Heath R.W. The Impact of Beamwidth on Temporal Channel Variation in Vehicular Channels and Its Implications // IEEE Transactions on Vehicular Technology. 2017. Vol. 66. Iss. 6. PP. 5014‒5029. doi: 10.1109/TVT.2016.2622164
- Va V., Shimizu T., Bansal G., Heath R.W. Beam design for beam switching based millimeter wave vehicle-to-infrastructure communications // Proceedings of the International Conference on Communications (ICC, Kuala Lumpur, Malaysia, 22‒27 May 2016). IEEE, 2016. doi: 10.1109/ICC.2016.7511414
- Andrews J.G., Zhang X., Durgin G.D., Gupta A.K. Are we approaching the fundamental limits of wireless network densification? // IEEE Communications Magazine. 2016. Vol. 54. Iss. 10. PP. 184‒190. doi: 10.1109/MCOM.2016.7588290
- Chiaraviglio L., Turco S., Bianchi G., Blefari-Melazzi N. “Cellular Network Densification Increases Radio-Frequency Pollution”: True or False? // IEEE Transactions on Wireless Communications. 2022. Vol. 21. Iss. 4. PP. 2608‒2622. doi: 10.1109/TWC.2021.3114198
- Thors B., Furuskär A., Colombi D., Törnevik C. Time-Averaged Realistic Maximum Power Levels for the Assessment of Radio Frequency Exposure for 5G Radio Base Stations Using Massive MIMO // IEEE Access. 2017. Vol. 5. PP. 19711‒19719. doi: 10.1109/ACCESS.2017.2753459
- Chiaraviglio L., Rossetti S., Saida S., Bartoletti S., Blefari-Melazzi N. “Pencil Beamforming Increases Human Exposure to ElectroMagnetic Fields”: True or False? // IEEE Access. 2021. Vol. 9. PP. 25158‒25171. doi: 10.1109/ACCESS.2021.3057237
- Ali A., Karabulut U., Awada A., Viering I., Tirkkonen O., Barreto A.N., et al. System Model for Average Downlink SINR in 5G Multi-Beam Networks // Proceedings of the 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC, Istanbul, Turkey, 08‒11 September 2019). IEEE, 2019. doi: 10.1109/PIMRC.2019.8904367
- Awada A., Lobinger A., Enqvist A., Talukdar A., Viering I. A simplified deterministic channel model for user mobility investigations in 5G networks // Proceedings of the International Conference on Communications (ICC, Paris, France, 21‒25 May 2017). IEEE, 2017. doi: 10.1109/ICC.2017.7997079
- Yu B., Yang L., Ishii H. Load Balancing With 3-D Beamforming in Macro-Assisted Small Cell Architecture // IEEE Transactions on Wireless Communications. 2016. Vol. 15. Iss. 8. PP. 5626‒5636. doi: 10.1109/TWC.2016.2563430
- Velazquez S.R., Broadstone S.R., Chiang A.M. Communication system using geographic position data. Patent U.S., no. 20040104839. 2004.
- Wu W.R., Wang, Y.K. Localization-based beamforming scheme for systems with multiple antennas. Patent U.S., no. 9755797. 2017.
- Gross F. Smart Antennas for Wireless Communications: With MATLAB. McGraw-Hill Professional, 2005. 288 p.
- Balanis C.A. Antenna theory: analysis and design. John Wiley & Sons, 2016. 1104 p.
- Mailloux R.J. Phased Array Antenna Handbook. Artech House, 2017. 691 p.
- phased.URA. Uniform rectangular array // MathWorks. URL: https://www.mathworks.com/help/phased/ref/phased.ura-system-object.html (дата обращения 20.09.2023)
- beamwidth. Beamwidth of antenna // MathWorks. URL: https://www.mathworks.com/help/antenna/ref/beamwidth.html (дата обращения 20.09.2023)
- viewArray. View array geometry // MathWorks. URL: https://www.mathworks.com/help/phased/ref/phased.ura.viewarray.html (дата обращения 20.09.2023)
- pattern. Plot URA array pattern // MathWorks. URL: https://www.mathworks.com/help/phased/ref/phased.ura.pattern.html (дата обращения 20.09.2023)
- patternAzimuth. Plot URA array directivity or pattern versus azimuth // MathWorks. URL: https://uk.mathworks.com/help/phased/ref/phased.ura.patternazimuth.html (дата обращения 20.09.2023)
- patternElevation. Plot URA array directivity or pattern versus elevation // MathWorks. URL: https://www.mathworks.com/help/phased/ref/phased.ura.patternelevation.html (дата обращения 20.09.2023)
- phased.SteeringVector. Sensor array steering vector // MathWorks. URL: https://www.mathworks.com/help/phased/ref/phased.steeringvector-system-object.html (дата обращения 20.09.2023)
- phased.ArrayGain. Sensor array gain // MathWorks. URL: https://www.mathworks.com/help/phased/ref/phased.
- arraygain-system-object.html (дата обращения 20.09.2023)
- rangeangle. Range and angle calculation // MathWorks. URL: https://www.mathworks.com/help/phased/ref/rangeangle.html (дата обращения 20.09.2023)
- fspl. Free space path loss // MathWorks. URL: https://www.mathworks.com/help/phased/ref/fspl.html (дата обращения 20.09.2023)
- Phased Array System Toolbox. MathWorks. URL: https://www.mathworks.com/help/phased (дата обращения 20.09.2023)
- LAB Link Level Simulator with Phased Array System Toolbox // GitHub. URL: https://github.com/grihafokin/LAB_link_ level_past_rus (дата обращения 20.09.2023)
Supplementary files

