Методика учета влияния параметров сферической подстилающей поверхности с конечной проводимостью на характеристики антенн ОНЧ-диапазона

Обложка

Цитировать

Полный текст

Аннотация

Подстилающая поверхность Земли оказывает существенное влияние на характеристики антенны и энергетические параметры радиотрассы. Несмотря на то, что теоретические аспекты влияния конечной проводимости подстилающей поверхности на антенны достаточно исследованы, требуется разработка частной методики, позволяющей автоматизировать расчеты энергетических параметров радиотрасс скачковым методом. В статье представлена методика учета электрических характеристик подстилающей поверхности, отличающаяся возможностью использования цифровых карт и автоматизации вычислений, представлены отдельные результаты расчетов поправочных антенных коэффициентов, подтверждающие теоретические выкладки. Разработанная методика может применяться при расчетах энергетических параметров радиотрасс скачковыми методами.

Об авторах

А. А. Типикин

Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. Кузнецова

Email: alextip@mail.ru
ORCID iD: 0000-0002-0940-4285

Д. С. Потапов

Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. Кузнецова

Email: denpotapow@yandex.ru
ORCID iD: 0009-0008-2289-1576

Список литературы

  1. Bradley P.A. IRI and VLF/LF radio service planning // Advances in Space Research. 2001. Vol. 27. Iss. 1. PP. 145–152. doi: 10.1016/S0273-1177(00)00150-2
  2. Cohen M.B., Inan U.S., Paschal E.W. Sensitive Broadband ELF/VLF Radio Reception with AWESOME instrument // IEEE Transactions on Geoscience and Remote Sensing. 2010. Vol. 48. Iss. 1. PP. 3–17. doi: 10.1109/TGRS.2009.2028334
  3. Lynn K. VLF Waveguide Propagation: The Basics // Proceedings of the 1st International Conference on Science with Very Low Frequency Radio Waves: Theory and Observations. 2010. Vol. 1286. Iss. 1. PP. 3–41. doi: 10.1063/1.3512893
  4. Pal S., Basak T., Chakrabarti S.K. Results of Computing Amplitude and Phase of the VLF Wave Using Wave Hop Theory // Advances in Geosciences. 2011. Vol. 27. PP. 1–11. doi: 10.1142/9789814355414_0001
  5. Bilitza D. IRI the international Standard for the ionosphere // Advances in Radio Science. 2018. Vol. 16. PP. 1‒11. doi: 10.5194/ars-16-1-2018
  6. Fron A., Galkin I., Krankowski A., Bilitza D., Hernández-Pajares M., Reinisch B., et al. Towards Cooperative Global Mapping of the Ionosphere: Fusion Feasibility for IGS and IRI with Global Climate VTEC Maps // Remote Sens. 2020. Vol. 12. Iss. 21. P. 3531. doi: 10.3390/rs12213531
  7. Galkin I., Fron A., Reinisch B., Hernández-Pajares M., Krankowski A., Nava B., et al. Global Monitoring of Ionospheric Weather by GIRO and GNSS Data Fusion // Atmosphere. 2022. Vol. 13. Iss. 3. P. 371. doi: 10.3390/atmos13030371
  8. Типикин А.А., Потапов Д.С. Методика оценки электрических характеристик почвы на трассе распространения земных радиоволн // Техника радиосвязи. 2022. № 1(52). С. 19‒29. doi: 10.33286/2075-8693-2022-52-19-29
  9. Типикин А.А. Методика формирования глобальных цифровых карт электрических характеристик подстилающей поверхности в диапазоне очень низких частот // Информатика, телекоммуникации и управление. 2022. Т. 15. № 1. С. 7‒18. doi: 10.18721/JCSTCS.15101
  10. Рекомендация МСЭ R P.684-7 (9/2016). Прогнозирование напряженности поля на частотах ниже приблизительно 150 кГц.
  11. Wait J., Conda A. Pattern of an antenna on a curved lossy surface // IRE Transactions on Antennas and Propagation. 1958. Vol. 6. Iss. 4. PP. 348–359. doi: 10.1109/TAP.1958.1144610
  12. Hyovalti D.C. Computations of the antenna cut-back factor for LF radio waves. Technical note №330. Boulder Laboratories, 1965.
  13. Knight P. MF propagation: a wavehop method for ionospheric field strength prediction // BBC eng. 1973. Vol. 100. P. 22–34.
  14. Coleman C.J. Analysis and Modeling of Radio Wave Propagation. Cambridge: Cambridge University Press, 2017. 296 p.
  15. Gonzalez G. Advanced Electromagnetic Wave Propagation Methods. Boca Raton: CRC Press, 2022. 708 p.
  16. Типикин А.А., Пыков Е.В. Уточненная модель высоты точки отражения для методики прогнозирования энергетических параметров радиотрасс в диапазоне очень низких частот // Труды всеармейской научно-практической конференции «Инновационная деятельность в вооруженных силах Российской Федерации». СПб.: ВАС, 2022.
  17. Макаров Г.И., Новиков В.В., Рыбачек С.Т. Распространение радиоволн в волноводном канале Земля–ионосфера и в ионосфере. М.: Наука, 1994. 152 с.
  18. Типикин А.А., Пыков Е.В., Розанов А.А. Модифицированная методика расчета дифференциальных временных задержек лучей в лучевой модели распространения радиоволн ОНЧ диапазона // Сборник трудов научно-технической конференции «Интеллектуальные разработки в интересах строительства и развития Военно-морского флота». 2022. С. 47–56.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».