Графовые нейронные сети для классификации трафика в каналах спутниковой связи: сравнительный анализ
- Авторы: До Ф.Х.1, Ле Ч.Д.2, Берёзкин А.А.1, Киричек Р.В.1
-
Учреждения:
- Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича
- Университет науки и технологий – Университет Дананга
- Выпуск: Том 9, № 3 (2023)
- Страницы: 14-27
- Раздел: Статьи
- URL: https://journals.rcsi.science/1813-324X/article/view/254373
- ID: 254373
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Ф. Х. До
Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича
Email: haodp@dau.edu.vn
ORCID iD: 0000-0003-0645-0021
Ч. Д. Ле
Университет науки и технологий – Университет Дананга
Email: letranduc@dut.udn.vn
ORCID iD: 0000-0003-3735-0314
А. А. Берёзкин
Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича
Email: berezkin.aa@sut.ru
ORCID iD: 0000-0002-1748-8642
Р. В. Киричек
Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича
Email: kirichek@sut.ru
ORCID iD: 0000-0002-8781-6840
Список литературы
- Rahmat-Samii Y., Densmore A. C. Technology trends and challenges of antennas for satellite communication systems // IEEE Transactions on Antennas and Propagation. 2014. Vol. 63. Iss. 4. PP. 1191‒1204.
- Kodheli O., Lagunas E., Maturo N., Sharma S.K., Shankar B., Montoya J.F.M., et al. Satellite Communications in the New Space Era: A Survey and Future Challenges // IEEE Communications Surveys & Tutorials. 2020. Vol. 23. Iss. 1. PP. 70‒109. doi: 10.1109/COMST.2020.3028247
- Yastrebova A., Kirichek R., Koucheryavy Y., Borodin A., Koucheryavy A., et al. Future Networks 2030: Architecture & Requirements // Proceedings of the 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT, Moscow, Russia, 05‒09 November 2018). IEEE, 2018. doi: 10.1109/ICUMT.2018.8631208
- Umar S., Eshiguike E.C., Anye V.C., Mamman T.V. Reliable Delivery of Point-To-Multi Point Services via Satellite (Multicast & Broadcast): Requirements and Solutions // International Research Journal of Advanced Engineering and Science. 2019. Vol. 4. Iss. 2. PP. 482‒486.
- Wang P., Zhang J., Zhang X., Yan Z., Evans B.G., Wang W. Convergence of Satellite and Terrestrial Networks: A Comprehensive Survey // IEEE Access. 2019. Vol. 8. P. 5550‒5588. doi: 10.1109/ACCESS.2019.2963223
- Chen S., Sun S., Kang S. System integration of terrestrial mobile communication and satellite communication—the trends, challenges and key technologies in B5G and 6G // China Communications. 2020. Vol. 17. Iss. 12. PP. 156‒171. doi: 10.23919/JCC.2020.12.011
- Abdu T.S., Kisseleff S., Lagunas E., Chatzinotas S. Flexible Resource Optimization for GEO Multibeam Satellite Communication System // IEEE Transactions on Wireless Communications. 2021. Vol. 20. Iss. 12. PP. 7888‒7902. doi: 10.1109/TWC.2021.3088609
- Niephaus C., Kretschmer M., Ghinea G. QoS Provisioning in Converged Satellite and Terrestrial Networks: A Survey of the State-of-the-Art // IEEE Communications Surveys & Tutorials. 2016. Vol. 18. Iss. 4. PP. 2415‒2441. doi: 10.1109/COMST.2016.2561078
- Zhou J., Cui G., Hu S., Zhang Z., Yang C., Liu Z., et al. Graph neural networks: A review of methods and applications // AI Open. 2020. Vol. 1. PP. 57‒81. doi: 10.1016/j.aiopen.2021.01.001
- He S., Xiong S., Ou Y., Zhang J., Wang J., Huang Y., et al. An Overview on the Application of Graph Neural Networks in Wireless Networks // IEEE Open Journal of the Communications Society. 2021. Vol. 2. PP. 2547‒2565. doi: 10.1109/OJCOMS.2021.3128637
- Suárez-Varela J., Almasan P., Ferriol-Galmes M., Rusek K., Geyer F., Cheng X., et al. Graph Neural Networks for Communication Networks: Context, Use Cases and Opportunities // IEEE Network. 2022. doi: 10.1109/MNET.123.2100773
- Ji X., Meng Q. Traffic Classification Based on Graph Convolutional Network // Proceedings of the International Conference on Advances in Electrical Engineering and Computer Applications (AEECA, Dalian, China, 25‒27 August 2020). IEEE, 2020. PP. 596‒601. doi: 10.1109/AEECA49918.2020.9213630
- Wang C., Tian R., Hu J., Ma Zhongyu, et al. A trend graph attention network for traffic prediction // Information Sciences. 2023. Vol. 623. PP. 275‒292. doi: 10.1016/j.ins.2022.12.048
- Wenjuan J., Peng Z. QoS routing algorithm based on traffic classification in LEO satellite networks // Proceedings of the Eighth International Conference on Wireless and Optical Communications Networks (Paris, France, 24‒26 May 2011). IEEE, 2011. doi: 10.1109/WOCN.2011.5872957
- Pacheco F., Exposito E., Gineste M. A Wearable Machine Learning Solution for Internet Traffic Classification in Satellite Communications // Proceedings of the 17th International Conference on Service-Oriented Computing (ICSOC 2019, Toulouse, France, 28–31 October 2019). Cham: Springer, 2019. PP. 202‒215. doi: 10.1007/978-3-030-33702-5_15
- Pacheco F., Exposito E., Gineste M. A framework to classify heterogeneous Internet traffic with Machine Learning and Deep Learning techniques for satellite communications. Computer Networks. 2020. Vol. 173. P. 107213. doi: 10.1016/j.comnet.2020.107213
- Pham V.D., Do P.H., Le D.T., Kirichek R. LoRa Link Quality Estimation Based on Support Vector Machine // Proceedings of the 24th International Conference on Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN 2021, Moscow, Russia, 20–24 September 2021). Lecture Notes in Computer Science. Vol. 13144. Cham: Springer, 2021. PP. 92‒102. doi: 10.1007/978-3-030-92507-9_9
- Pang B., Fu Y., Ren S., Wang Y., Liao Q., Jia Y. CGNN: Traffic Classification with Graph Neural Network. arXiv:2110.09726. 2021. doi: 10.48550/arXiv.2110.09726
- Luksha I., Dinh T.D., Karelin E., Glushakov R., Kirichek R. Method for filtering encrypted traffic using a neural network between an Industrial Internet of things system and Digital Twin // Proceedings of the 5th International Conference on Future Networks & Distributed Systems (ICFNDS 2021, Dubai, United Arab Emirates, 15‒16 December 2021). New York: Association for Computing Machinery, 2021. PP. 595‒601. doi: 10.1145/3508072.3508193
- Huoh T.L., Luo Y., Li P., Zhang T. Flow-based Encrypted Network Traffic Classification with Graph Neural Networks // IEEE Transactions on Network and Service Management. 2022. doi: 10.1109/TNSM.2022.3227500
- Pang B., Fu Y., Ren S., Jia Y. High-performance Network Traffic Classification Based on Graph Neural Network // Proceedings of the 6th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC, Chongqing, China, 24‒26 February 2023). IEEE, 2023. PP. 800‒804. doi: 10.1109/ITNEC56291.2023.10082049
- Do P.H., Le T.D., Vishnevsky V., Berezkin A., Kirichek R. A Horizontal Federated-Learning Model for Detecting Abnormal Traffic Generated by Malware in IoT Networks // Proceedings of the 25th International Conference on Advanced Communication Technology (ICACT, Pyeongchang, Republic of Korea, 19‒22 February 2023). IEEE, 2023. PP. 28‒36. doi: 10.23919/ICACT56868.2023.10079624
- Vladimirov S., Kirichek R., Vishnevsky V. Network Coding for the Interaction of Unmanned Flying Platforms in Data Acquisition Networks // Proceedings of the 4th International Conference on Future Networks and Distributed Systems (ICFNDS, Saint-Petersburg, Russian Federation, 26‒27 November 2020). New York: Association for Computing Machinery, 2020. doi: 10.1145/3440749.3442622
- Abdrakhmanova M., Kuzdeuov A., Jarju S., Khassanov Y., Lewis M., Varol H.A. Speakingfaces: A Large-Scale Multimodal Dataset of Voice Commands with Visual and Thermal Video Streams // Sensors. 2021. Vol. 21. Iss. 10. P. 3465. doi: 10.3390/s21103465
- Labayen V., Magaña E., Morató D., Izal M. Online classification of user activities using machine learning on network traffic // Computer Networks. 2020. Vol. 181. P. 107557. doi: 10.1016/j.comnet.2020.107557
- Du B., Cai S., Wu C. Object Tracking in Satellite Videos Based on a Multiframe Optical Flow Tracker // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2019. Vol. 12. Iss. 8. PP. 3043‒3055. doi: 10.1109/JSTARS.2019.2917703
- Naas M., Fesl J. A novel dataset for encrypted virtual private network traffic analysis // Data in Brief. 2023. Vol. 47. P. 108945. doi: 10.1016/j.dib.2023.108945
- Hosseini N., Jamal H., Haque J., Magesacher T., Matolak D.W. UAV Command and Control, Navigation and Surveillance: A Review of Potential 5G and Satellite Systems // Proceedings of the IEEE Aerospace Conference (Big Sky, USA, 02‒09 March 2019). IEEE, 2019. doi: 10.1109/AERO.2019.8741719
- Mahfouz A., Abuhussein A., Venugopal D., Shiva S. Ensemble Classifiers for Network Intrusion Detection Using a Novel Network Attack Dataset // Future Internet. 2020. Vol. 12. Iss. 11. P. 180. doi: 10.3390/fi12110180
- Do P.H. Dinh T.D., Le D.T., Pham V.D., Myrova L., Kirichek R. An Efficient Feature Extraction Method for Attack Classification in IoT Networks // Proceedings of the 13th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT, Brno, Czech Republic, 25‒27 October 2021). IEEE, 2021. PP. 194‒199. doi: 10.1109/ICUMT54235.2021.9631726
- Ji X., Meng Q. Traffic Classification Based on Graph Convolutional Network // Proceedings of the International Conference on Advances in Electrical Engineering and Computer Applications (AEECA, Dalian, China, 25‒27 August 2020). IEEE, 2020. PP. 596‒601. doi: 10.1109/AEECA49918.2020.9213630
- Pham T.D., Ho T.L., Truong-Huu T., Cao T.D., Truong H.L. Mappgraph: Mobile-App Classification on Encrypted Network Traffic Using Deep Graph Convolution Neural Networks // Proceedings of the Annual Computer Security Applications Conference (ACSAC, 6‒10 December 2021). New York: Association for Computing Machinery, 2021. PP. 1025‒1038. doi: 10.1145/3485832.3485925
- Marín G., Caasas P., Capdehourat G. Deepmal-Deep Learning Models for Malware Traffic Detection and Classification // Proceedings of the 3rd International Data Science Conference on Data Science–Analytics and Applications (iDSC2020). Wiesbaden: Springer Vieweg, 2021. PP. 105‒112. doi: 10.1007/978-3-658-32182-6_16
- Kipf T.N., Welling M. Semi-Supervised Classification with Graph Convolutional Networks // arXiv:1609.02907. 2016. doi: 10.48550/arXiv.1609.02907
- Berezkin A., Kukunin D., Kirichek R. Neural Network Coding in Data Compression Systems in Communication Channels // Proceedings of the International Conference on Information, Control, and Communication Technologies (ICCT, Astrakhan, Russian Federation, 03‒07 October 2022). IEEE, 2022. doi: 10.1109/ICCT56057.2022.9976532
Дополнительные файлы
